
Section 5: Solutions

Review of Main Concepts

• Independence: Random variable X and event E are independent iff

∀x, P(X = x ∩ E) = P(X = x)P(E)

Random variables X and Y are independent iff

∀x∀y, P(X = x ∩ Y = y) = P(X = x)P(Y = y)

In this case, we have E[XY ] = E[X]E[Y ] (the converse is not necessarily true).

• i.i.d. (independent and identically distributed): Random variablesX1, . . . , Xn are i.i.d. (or iid) iff they are
mutually independent and have the same probability mass function.

• Independence of functions of a r.v.: If X and Y are independent and g(·), h(·) are functions mapping real
numbers to real numbers, then g(X) and h(Y ) are independent. (See if you can prove this!)

• Variance of Independent Variables: If X is independent of Y , Var (X + Y ) = Var (X) + Var(Y ). This
depends on independence, whereas linearity of expectation always holds. Note that this combined with the
above shows that ∀a, b, c ∈ R and if X is independent of Y , V ar(aX + bY + c) = a2V ar(X) + b2V ar(Y ).

• Review: Zoo of Discrete Random Variables

(a) Uniform: X ∼ Uniform(a, b) (Unif(a, b) for short), for integers a ≤ b, iff X has the following probability
mass function:

pX (k) =
1

b− a+ 1
, k = a, a+ 1, . . . , b

E[X] = a+b
2 and V ar(X) = (b−a)(b−a+2)

12 . This represents each integer from [a, b] to be equally likely. For
example, a single roll of a fair die is Uniform(1, 6).

(b) Bernoulli (or indicator): X ∼ Bernoulli(p) (Ber(p) for short) iff X has the following probability mass
function:

pX (k) =

{
p, k = 1

1− p, k = 0

E[X] = p and V ar(X) = p(1− p). An example of a Bernoulli r.v. is one flip of a coin with P (head) = p.

(c) Binomial: X ∼ Binomial(n, p) (Bin(n, p) for short) iff X is the sum of n iid Bernoulli(p) random vari-
ables. X has probability mass function

pX (k) =

(
n

k

)
pk (1− p)

n−k
, k = 0, 1, . . . , n

E[X] = np and V ar(X) = np(1 − p). An example of a Binomial r.v. is the number of heads in n
independent flips of a coin with P (head) = p. Note that Bin(1, p) ≡ Ber(p). As n → ∞ and p →
0,with np = λ, then Bin (n, p) → Poi(λ). If X1, . . . , Xn are independent Binomial r.v.’s, where Xi ∼
Bin(Ni, p), then X = X1 + . . .+Xn ∼ Bin(N1 + . . .+Nn, p).

(d) Geometric: X ∼ Geometric(p) (Geo(p) for short) iff X has the following probability mass function:

pX (k) = (1− p)
k−1

p, k = 1, 2, . . .

E[X] = 1
p and V ar(X) = 1−p

p2 . An example of a Geometric r.v. is the number of independent coin flips
up to and including the first head, where P (head) = p.
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(e) Poisson: X ∼ Poisson(λ) (Poi(λ) for short) iff X has the following probability mass function:

pX (k) = e−λλ
k

k!
, k = 0, 1, . . .

E[X] = λ and V ar(X) = λ. An example of a Poisson r.v. is the number of people born during a particular
minute, where λ is the average birth rate per minute. IfX1, . . . , Xn are independent Poisson r.v.’s, where
Xi ∼ Poi(λi), then X = X1 + . . .+Xn ∼ Poi(λ1 + . . .+ λn).

(f) Negative Binomial: X ∼ NegativeBinonial(r, p) (NegBin(r, p) for short) iff X is the sum of r iid
Geometric(p) random variables. X has probability mass function

pX (k) =

(
k − 1

r − 1

)
pr (1− p)

k−r
, k = r, r + 1, . . .

E[X] = r
p and V ar(X) = r(1−p)

p2 . An example of a Negative Binomial r.v. is the number of independent
coin flips up to and including the rth head, where P (head) = p. If X1, . . . , Xn are independent Negative
Binomial r.v.’s, where Xi ∼ NegBin(ri, p), then X = X1 + . . .+Xn ∼ NegBin(r1 + . . .+ rn, p).

(g) Hypergeometric: X ∼ HyperGeometric(N,K, n) (HypGeo(N,K, n) for short) iff X has the following
probability mass function:

pX (k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , k = max{0, n+K −N}, . . . ,min {K,n}

E[X] = nK
N . This represents the number of successes drawn, when n items are drawn from a bag with

N items (K of which are successes, and N − K failures) without replacement. If we did this with
replacement, then this scenario would be represented as Bin

(
n, K

N

)
.

1. Content Review Questions

(a) True or false: V ar(A+B) = V ar(A) + V ar(B) Solution:

False. This property only holds if A and B are independent.

(b) What is V ar(3A+ 4)?

3V ar(A) + 4

3V ar(A)

9V ar(A)

V ar(A)

Solution:

9V ar(A) by the property of variance

(c) True or false: E[A+B] = E[A] + E[B] Solution:

True. This is by the linearity of expectation. A and B do not have to be independent.

(d) What is E[3A+ 4]?

3E[A] + 4
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3E[A]

9E[A]

E[A]

Solution:

3E[A] + 4 by the linearity of expectation.

2. Pond Fishing

Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where B + R + G = N . Each fish
is equally likely to be caught. For each of the following scenarios, identify the most appropriate distribution (with
parameter(s)):

(a) How many of the next 10 fish I catch are blue, if I catch and release

Bin
(
10,

B

N

)

Ber
(
B

N

)

Bin
(
1,

B

N

)
Solution:

Since this is the same as saying how many of my next 10 trials (fish) are a success (are blue), this is a
binomial distribution. Specifically, since we are doing catch and release, the probability of a given fish
being blue is B

N and each trial is independent. Thus:

Bin
(
10,

B

N

)

(b) How many fish I had to catch until my first green fish, if I catch and release

Ber
(
G

N

)

Bin
(
1,

G

N

)

Geo
(
G

N

)
Solution:
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Once again, each catch is independent, so this is asking how many trials until we see a success, hence it is
a geometric distribution:

Geo
(
G

N

)

(c) How many red fish I catch in the next five minutes, if I catch on average r red fish per minute

Poi(5R)

Bin
(
5,

R

N

)

Poi(5r)

Solution:

This is asking for the number of occurrences of event given an average rate, which is the definition of the
Poisson distribution. Since we’re looking for events in the next 5 minutes, that is our time unit, so we have
to adjust the average rate to match (r per minute becomes 5r per 5 minutes).

Poi(5r)

(d) Whether or not my next fish is blue

Poi(5B)

Bin
(
1,

R

N

)

Ber
(
B

N

)
Solution:

This is the same as the binomial case, but it’s only one trial, so it is necessarily Bernoulli.

Ber
(
B

N

)

(e) (optional) How many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after
each catch Solution:

We have not covered the Hypergeometric RV in class, but its definition is the number of successes in n
draws (without replacement) from N items that contain K successes in total. In this case, we have 10
draws (without replacement because we do not catch and release), and out of the N fish, B are blue (a
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success).
HypGeo(N,B, 10)

(f) (optional) Howmany fish I have to catch until I catch three red fish, if I catch and release Solution:

Negative binomial is another RV we didn’t cover in class. It models the number of trials with probability
of success p, until you get r successes. In this case, as before, our trials are caught fish (with replacement
this time) and our success is if the fish are red, which happens with probability R

N .

NegBin
(
3,

R

N

)

3. Balls in Bins

Note: this problem also appeared on the section 4 handout.
Let X be the number of bins that remain empty when m balls are distributed into n bins randomly and indepen-
dently. For each ball, each bin has an equal probability of being chosen. (Notice that two bins being empty are not
independent events: if one bin is empty, that decreases the probability that the second bin will also be empty. This
is particularly obvious when n = 2 and m > 0.) Find E[X]. Solution:

For i ∈ [n], let Xi be 1 if bin i is empty, and 0 otherwise. Then, X =
∑n

i=1 Xi. We first compute the expectation
of an individual Xi:

E[Xi] = 1 · P(Xi = 1) + 0 · P(Xi = 0) = P(Xi = 1) =

(
n− 1

n

)m

.

Indeed, we are assuming multiple balls can go in the same bin. As such, when computing P (Xi = 1), given
that bin i is empty, we remove it from the pool of possible bins to pick from, leaving us with n− 1 bins out of a
total of n bins in which we can place balls. Since we are distributing m balls over the n bins, the event that bin
i remains empty occurs with probability

(
n−1
n

)m
. Hence, by linearity of expectation:

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

(
n− 1

n

)m

= n ·
(
n− 1

n

)m

.

4. 3-sided Die

Note: a variation of this problem also appeared on the section 4 handout. Let the random variable X be the sum of
two independent rolls of a fair 3-sided die. (If you are having trouble imagining what that looks like, you can use
a 6-sided die and change the numbers on 3 of its faces.)

(a) What is the probability mass function of X?

Solution:

First let us define the range of X. A three sided-die can take on values 1, 2, 3. Since X is the sum of two
rolls, the range of X is ΩX = {2, 3, 4, 5, 6}.

We can then define the pmf of X. To that end, we must define two random variables R1, R2 with R1

being the roll of the first die, and R2 being the roll of the second die. Then, X = R1 + R2. Note that
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ΩR1 = ΩR2 = {1, 2, 3}. With that in mind we can find the pmf of X:

pX(k) = P(X = k) =
∑

i∈ΩR1

P(R1 = i, R2 = k − i)

=
∑

i∈ΩR1

P(R1 = i) · P(R2 = k − i) (By independence of the rolls)

=
∑

i∈ΩR1

1

3
· pR2(k − i)

=
1

3
(pR2(k − 1) + pR2(k − 2) + pR2(k − 3))

At this point, we can evaluate the pmf of X for each value in the range of X, noting that pR2(k− i) = 0 if
k − i 6∈ ΩR2, 1/3 otherwise. We get:

pX(k) =



1/9 k = 2

2/9 k = 3

3/9 k = 4

2/9 k = 5

1/9 k = 6

0 otherwise

One could also list out the possible values of the first two rolls and use a table to find the marginal pmf of
X by summing up the entries of each row for each k ∈ ΩX .

(b) Find E[X].

Solution:

There are two ways to find the expected value of X. We could apply the definition of expectation using the
PMF found in part (a). This gives us

E[X] =

6∑
k=2

kpX(k) = 2 · 1
9
+ 3 · 2

9
+ 4 · 3

9
+ 5 · 2

9
+ 6 · 1

9
= 4

Alternatively, we can use linearity of expectation here. Let R1 be the roll of the first die, and R2 the roll of
the second. Then, X = R1 +R2.
By linearity of expectation, we get:

E[X] = E[R1 +R2] = E[R1] + E[R2]

We compute:

E[R1] =
∑

i∈ΩR1

i · P(R1 = i) =
∑

i∈ΩR1

i · 1
3
=

1

3
(1 + 2 + 3) = 2

Similarly, E[R2] = 2, since the rolls are independent.

Plugging into our expression for the expectation of X gives us:

E[X] = 2 + 2 = 4

(c) What is V ar(X)?

Solution:
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We know from the definition of variance that

V ar(X) = E[X2]− E[X]2

We can compute the E[X2] term as follows:

E[X2] =

6∑
x=2

x2pX(x) =
22 · 1 + 32 · 2 + 42 · 3 + 52 · 2 + 62 · 1

9
=

52

3

Plugging this into our variance equation gives us

V ar(X) = E[X2]− E[X]2 =
52

3
− 42 =

4

3

5. Best Coach Ever!!

You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2
independently of every other match.

(a) How many matches do you expect to fight until you win 10 times and what kind of random variable is this?
Solution:

The number of matches you have to fight until you win 10 times can be modeled by
∑10

i=1 Xi where
Xi ∼ Geometric(0.2) is the number of matches you have to fight to go from i− 1 wins to i wins, including
the match that gets you your ith win, where every match has a 0.2 probability of success. Recall E[Xi] =
1
0.2 = 5. E[

∑10
i=1 Xi] =

∑10
i=1 E[Xi] =

∑10
i

1
0.2 = 10 · 5 = 50.

(b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer needs
to win at least 10 matches in a year. What is the probability that you will go to the Championship this year
and what kind of random variable is the number of matches you win out of the 12? Solution:

You can go to the championship if you win more than or equal to 10 times this year. Let Y be the number
of matches you win out of the 12 matches. Note that Y ∼ Binomial(12, 0.2). Since the max number you
can win is 12 (there are 12 matches), we are looking for P (10 ≤ Y ≤ 12). Thus, since Y is discrete, we
are interested in

P(Y = 10) + P(Y = 11) + P(Y = 12) =

12∑
i=10

(
12

i

)
0.2i(1− 0.2)12−i

(c) Let p be your answer to part (b). How many times can you expect to go to the Championship in your 20 year
career? Solution:

The number of times you go to the championship can be modeled by Y ∼ Binomial(20, p). So, E[Y ] =
20 · p.

6. Variance of a Product

Let X,Y, Z be independent random variables with means µX , µY , µZ and variances σ2
X , σ2

Y , σ
2
Z , respectively. Find

V ar(XY − Z). Solution:
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First notice that V ar(X) = E[X2]− E[X]2 =⇒ E[X2] = V ar(X) + E[X]2 = σ2
X + µ2

X , and same for Y .

V ar(XY ) = E[X2Y 2]− E[XY ]2(by theorem in class)

= E[X2]E[Y 2]− (E[X]E[Y ])2(by independence)

= E[X2]E[Y 2]− E[X]2E[Y ]2

= (σ2
X + µ2

X)(σ2
Y + µ2

Y )− µ2
Xµ2

Y

By independence,
V ar(XY − Z) = V ar(XY ) + V ar(−Z) = V ar(XY ) + V ar(Z)

= (σ2
X + µ2

X)(σ2
Y + µ2

Y )− µ2
Xµ2

Y + σ2
Z

7. True or False?

Identify the following statements as true or false (true means always true). Justify your answer.

(a) For any random variable X, we have E[X2] ≥ E[X]2. Solution:

True, since 0 ≤ V ar(X) = E[(X − E[X])2], since the squaring necessitates the result is non-negative.

(b) Let X,Y be random variables. Then, X and Y are independent if and only if E[XY ] = E[X]E[Y ]. Solution:

False. The forward implication is true, but the reverse is not. For example, if X is the discrete uniform
random variable on the set {−1, 0, 1} such that P (X = −1) = P (X = 0) = P (X = 1) = 1

3 , and Y = X2,
we have E[X] = 0, so E[X]E[Y ] = 0. However, since X = X3, E[XY ] = E[XX2] = E[X3] = E[X] = 0,
we have that E[X]E[Y ] = 0 = E[XY ]. However, X and Y are not independent; indeed, P(Y = 0|X =
0) = 1 6= 1

3 = P(Y = 0).

(c) Let X ∼ Binomial(n, p) and Y ∼ Binomial(m, p) be independent. Then, X + Y ∼ Binomial(n + m, p).
Solution:

True. X is the sum of n independent Bernoulli trials, and Y is the sum ofm. SoX+Y is the sum of n+m
independent Bernoulli trials, so X + Y ∼ Binomial(n+m, p).

(d) Let X1, ..., Xn+1 be independent Bernoulli(p) random variables. Then, E[
∑n

i=1 XiXi+1] = np2. Solution:

True. Notice that XiXi+1 is also Bernoulli (only takes on 0 and 1), but is 1 iff both are 1, so XiXi+1 ∼
Bernoulli(p2). The statement holds by linearity, since E[XiXi+1] = p2.

(e) Let X1, ..., Xn+1 be independent Bernoulli(p) random variables. Then, Y =
∑n

i=1 XiXi+1 ∼ Binomial(n, p2).
Solution:

False. They are all Bernoulli p2 as determined in the previous part, but they are not independent. Indeed,
P(X1X2 = 1|X2X3 = 1) = P(X1 = 1) = p 6= p2 = P(X1X2 = 1).
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(f) If X ∼ Bernoulli(p), then nX ∼ Binomial(n, p). Solution:

False. The range of X is {0, 1}, so the range of nX is {0, n}. nX cannot be Bin(n, p), otherwise its range
would be {0, 1, ..., n}.

(g) If X ∼ Binomial(n, p), then X
n ∼ Bernoulli(p). Solution:

False. Again, the range of X is {0, 1, ..., n}, so the range of X
n is {0, 1

n ,
2
n , ..., 1}. Hence it cannot be Ber(p),

otherwise its range would be {0, 1}.

(h) For any two independent random variables X,Y , we have V ar(X − Y ) = V ar(X) − V ar(Y ). Solution:

False. V ar(X − Y ) = V ar(X + (−Y )) = V ar(X) + (−1)2V ar(Y ) = V ar(X) + V ar(Y ).

8. Fun with Poissons

Let X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), and X and Y are independent.

(a) Show that X + Y ∼ Poisson(λ1 + λ2) [This was done in class.] Solution:

To show that a random variable is distributed according to a particular distribution, we must show that
they have the same PMF. Thus, we are trying to show that P (X + Y = n) = e−(λ1+λ2) (λ1+λ2)

n

n!

P (X + Y = n) =

n∑
k=0

P (X = k ∩ Y = n− k)

=
n∑

k=0

P (X = k)P (Y = n− k) [X and Y are independent]

=

n∑
k=0

e−λ1
λk
1

k!
e−λ2

λn−k
2

(n− k)!

= e−(λ1+λ2)
n∑

k=0

λk
1

k!

λn−k
2

(n− k)!

= e−(λ1+λ2)
n∑

k=0

1

k!(n− k)!
λk
1λ

n−k
2

=
e−(λ1+λ2)

n!

n∑
k=0

n!

k!(n− k)!
λk
1λ

n−k
2

=
e−(λ1+λ2)

n!

n∑
k=0

(
n

k

)
λk
1λ

n−k
2

=
e−(λ1+λ2)

n!
(λ1 + λ2)

n [Binomial Theorem]

(b) Show that P (X = k | X + Y = n) = P (W = k) where W ∼ Bin(n, λ1

λ1+λ2
) Solution:
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P (X = k | X + Y = n) =
P (X = k ∩X + Y = n)

P (X + Y = n)

=
P (X = k ∩ Y = n− k)

P (X + Y = n)

=
P (X = k)P (Y = n− k)

P (X + Y = n)
[X and Y are independent]

=
e−λ1 λk

1

k! · e
−λ2

λn−k
2

(n−k)!

e−(λ1+λ2) (λ1+λ2)n

n!

=

λk
1

k! ·
λn−k
2

(n−k)!

(λ1+λ2)n

n!

=
n!

k!(n− k)!
· λk

1λ
n−k
2

(λ1 + λ2)n

=

(
n

k

)
λk
1 λn−k

2

(λ1 + λ2)k (λ1 + λ2)n−k

=

(
n

k

) (
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

=

(
n

k

)
pk (1− p)n−k , where p =

λ1

λ1 + λ2

9. Memorylessness

We say that a random variable X is memoryless if P(X > k+ i | X > k) = P(X > i) for all non-negative integers k
and i. The idea is that X does not remember its history. Let X ∼ Geo(p). Show that X is memoryless.

Solution:

Let’s note that if X ∼ Geo(p), then P(X > k) = P(no successes in the first k trials) = (1− p)k.

P(X > k + i | X > k) =
P(X > k | X > k + i) P(X > k + i)

P(X > k)
[Bayes Theorem]

=
P(X > k + i)

P(X > k)
[P(X > k | X > k + i) = 1]

=
(1− p)k+i

(1− p)k
[P(X > k) = (1− p)k]

= (1− p)i

= P(X > i)

10. Poisson Practice

Seattle averages 3 days with snowfall per year. Suppose the number of days with snowfall follows a Poisson distri-
bution.

(a) What is the probability of getting exactly 5 days of snow in a year? Solution:
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Let X ∼ Poi(3) Then pX(5) = 35e−3

5! ≈ .1008

(b) According to the Poisson model, what is the probability of getting 367 days of snow? Solution:

Let X ∼ Poi(3) Then pX(367) = 3367e−3

367! ≈ 1.8 × 10−610, that’s a very small estimate, but of course the
true probability is 0. Recall that using a Poisson distribution is a modeling assumption, it may produce
nonzero probabilities for events that are practically impossible.
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