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Dependence

Let's think about 2 dimensions.

Let X = [Xl,{(_g]T where Var(X,) = 3, Var(X,) = 3 BUT X; and X, are
dependent. Cov(Xy, X,) = 2 —=—=>  =—=—=——

What is 2?7 Which of these pictures are i.I.d. samples of X7
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Using the Covariance Matrix

What were those ellipses in those datasets?

How do ]\c/ve know how many standard deviations from the mean a 2D
INt i ' riance 1 on
point is, for the méj,e_p%nt, variance 1 ones

Well (x1 — E Xl]) s the distance from x to the center in the x-direction.
And (x, — E[x,] ﬁs the distance from x to the center in the y-direction.

So the number of standard deviations is \/(xl — E[X{D? + (x, — E[x,])?

/

That's just the distance! —

In general, the major/minor axes of those ellipses were the eigenvectars
of the covariance matrix. And the associated eigenvalues tell you how
the directions should be weighted.




‘ Victory Lap



What Have We Done?

Well let's look back...



Content

" Combinatorics (fancy counting)
\__Permutations, combinations, inclusion-exclusion, pigeonhole principle

ﬁ)rmal definitions for Probability

Probability space, events, conditional probability, independence, expectation,
variance

gtommon patterns in probability

Equations and inequalities, zoo” of common random variables, tail bounds

. e _
Continuous Probability
pdf, cdf, sample distributions, central limit theorem, estimating probabilities
Applications %
Across CS, but with some focus on ML.



Themes

Precise mathematical communication
Both reading and writing dense statements.

Probability in the “real world”
A mix of CS applications
And some actual “real life” ones.

Feﬁne your intuition
Most people have some base level feeling of what the chances of some event are.

We're going to train you to have better gut feelings.



Use Your Powers Wisely

We've seen probability can be used in the real world!
But also that it:
Can be counter-intuitive/hard to explain (Bayes Rule/Real World)

Probability estimates can depend on the model you're using (Real
World)

Can be used to analyze ML applications, and think about the impacts of
using them.



How (not to) lie with statistics

You now know a lot of the tools that people use to lie with statistics. (See
also: INFO 270)

Some patterns to watch out for:

Matt Parker)

Make a model, find that an event that occurred had small probability/fails
some statistical test, claim that the only explanation is something nefarious
occurred.

My smoke alarm is going off, please pay for my new house! (analogy from]

Better response: could the model be wrong? Is this statistical test

appropriate? Qnce in 100 year events do happen...about once in every
hundred years, is this just the one? |



https://www.callingbullshit.org/

How (not to) lie with statistics

See a story about testing?
=

Remember from Bayes' Rule that you need three numbers to

understand a test. (3 of prior, posterior, false positive rate, false negative
rate). — - T —

———

Headlines usually give you one number, that often isn't even one of the
ones you need for Bayes (“this test is less accurate than a coin flip!”).

The article itself, if you're lucky, might give you one or two of the
numbers for Bayes — don't forget the prior!



How (not to) lie with statistics

Before being impressed with a number, make sure you understand what
It means.

Recent example for Robbie:

In baseball umpires decide whether a pitch is a strike or a ball (whether
it goes through an (invisible) rectangle when thrown to the hitter)

There are camera systems built into stadiums that track the ball, and
figure out where it went

In an infamous game an umpire missedl2;/c;::o?f the calls, according to an

unofficial analysis of the data.
Or possibly 4% of the calls, according to the official analysis of the data.



How (not to) lie with statistics

We can apply our knowledge to the real world!

But if you're applying in a new domain, get information from domain

experts, don't instantly assume because you know Bayes’ Rule that you
know better than domain experts.

Don’t hesitate to use these tools to understand new domains better!

But do keep in mind some things can't be quantified and just because
. I l\—_——/‘
we can use an algorithm doesn’'t mean we always should.



What to take next?

gm €6 ¢ Y]

ML (CSE 446) using probability, linear algebra, and other techniques to
extract patterns from data and make predictions.

CSE 421 designing algorithms — very little direct probability, but the
combinatorics we did at the beginning will be useful.
We also have a graduate level course in randomized algorithms, but it h3s a few

Mmaore prereqgs \{ gi
CSE 447 Natural Language Processing Q[ ></ &K\ ( ﬂ

CSE 426 Cryptography g
CSE 422 Modern Algorithms I}g

Other things!



[~ Conditional Expectation Practice



Practice with conditional expectations

Consider of the following process:

Flip a fair coin, if it's heads, pick up a 4-sided die; if it's tails, pick up a 6-
sided die (both fair)

Roll that die independently 3 times. Let X1, X5, X5 be the results of the
three rolls.



Using conditional expectations

Let F be the event “the four sided die was chosen”
E[X,] = P(F)E[X,|F] + P(F)E[X,|F]
=>.25+--35=3

2 2

E[X,|X; = 5] event X; = 5 tells us we're using the 6-sided die.

E[X,|X3; = 1] We aren’t sure which die we got, but...is it still 50/507



Setup

LetE be the event X; = 1°

1 1 1 1 5
PE) =352 3 m
P(E|F)-P(F
P(F|E) = I'P(E)()
11
_ 37 _3
5/24 5
PEIF)P(F) _ 33
P(FlE): (|) ()_ 6 2

P(E)  5/24
good confirmation)

2
5

(we could also get this with LTP, but it's



Analysis

Wait what?
This is the LTE, applied in the space where we've conditioned on X3 = 1.

Everything is conditioned on X3 = 1. Beyond that conditioning, it's LTE.

3 2
—5-2.5+E-3.5—2.9.

A little lower than the unconditioned expectation. Because seeing a 1

has made it ever so slightly more probable that we're using the 4-sided
die.
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