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What's a randomized algorithm?

A randomized algorithm is an algorithm that uses randomness in the
computation. -
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Well, ok.
Let's get a little more specific.




Two common types of algorithms

Las Vegas Algorithm
Always tells you the right answer

Takes varying amounts of time.
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Monte Carlo Algorithm
Usually tells you the right answer. Sometimes the wrong one.




A classic Las Vegas Algorithm

Remember Quick Sort?

Pick a “pivot” element
Move all the elements smaller than the pivot to the left subarray (in no particular

order)
Move all elements greater than the pivot element to the right subarray (in no
particular order)

Make two recursive calls

It's sometimes implemented as a Las Vegas Algorithm.
/

That is, you'll always get the same answer (there’s only one sorted array)
but the time can vary. -




Quick Sort

https: / /www.youtube.com/watch2v=ywWBy6)59gz8
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https://www.youtube.com/watch?v=ywWBy6J5gz8

. Total time:
How long does it take? .
i = 0(n%)
Well...it depends on what pivots you pick. e
)
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O (i) work when i elements remaining.

About n
levels




For Simplicity

We'll talk about how quicksort is really done at the end.

For now an easier-to-analyze version:

1f (elements remaining > 1)
pick a pivot uniformly at random
split based on pivot
sortedlLeft = QuickSort (left half)
sortedRight = QuickSort (right half)
return (sortedLeft pivot sortedRight)



What leads to a good time?

Pivots closer to the middlﬁ“i be better. _
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O (i) work when i elements remaining. -- O(n) per level



Work at each level

How much work do those splits do?

Each call choose a pivot
O (n) total per level

Each element is compared to the pivot and possibly swapped
0(1) per element so 0(n) per level.

So as long as we need at most 0(logn) levels, we'll get the
O(nlogn) running time we need.

We only get the perfect pivot with probablllty . That's not very
likely...maybe we can settle for something more likely.



Focus on an element /Jj@\/] j
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Let's focus on one element of the array x;— |

The recursion will stop when every elementis all alone in their own
subarray.

Call an iteration “good for x4 if the array containing x; in the next step
is at most 2 the size ltwasm the current step.
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Pivot here: both subarrays < 3/4 size. Pivot here: might leave x; in a

Must be good for x;. big subarray (if x4 is small)

Pivot here: might leave x4 in
a big subarray (if x4 is big)



Good for x;

At least half of the potential pivots guarantee x; ends up with a good

iteration. So we'll use P(x; good iteration) > 1/2
— \bﬂ

It's actually quite a bit more than half for large arrays — one of the two
red subarrays might be good for x; (just bad for the others in the array)

x; Might be our pivot, in which case it's totally done.

To avoid any tedious special cases for small arrays, just say at least 2.



How many levels?

How many levels do we need to go?

—_—
Once x4 is in a size 1 subarray, it's done. How many iterations does it
take? )

It we only had good iterations, we'd need
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(Z)gn <l1=>n< (g)k = k = log,/sn.
==

| want (at the end of our process) to say with probability at least <blah>
the running time is at most O(nlogn).

What's the probability of getting a lot of good iterations...what's the tool
we should use?



Needed iterations

x; is done after log, 3 n = 1n(7:) < 4Inn good for x; iterations.

T n(3) T =
Let's imagine we do 24 In(n) iterations. Let Y ~Bin (24 In(n) %)
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< P(Y < 4Inn)
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Set up tfor Chernoft
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P(Y <[1-06]-22®) < exp (— 5;—“)
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1-6=1/3 26 =2/3

P(x;not done
{anot done)




Applying Chernoft

2 —-12 In(n) 8
(1 2100122 < p(-22) () -
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So, the probability that x; is not done after 24 In(n) iterations is at most
e—8ln(n)/3 — n—8/3

%



Finishing The bound

So x; is done with probability at least 1 — n=8/3

But x; being done doesn’'t mean the whole algorithm is done...

This argument so far does apply to any other x; -- but they aren't
independent, so....union bound!

8
P(algorithm not done)< YP(x; done)= nP(x, done)=n-n"3 = n=>/3
L LR
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P(algorithm done)> 1 —n=>/3.
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Quicksort

With probability at least 1 — % Quicksort runs in time O(n - logn)

This kind of bound (with probability - 1 as n — o is called a "high

probability bound” we say quicksort needs O (nlogn) time “with high
probability”

Better than finding a bound on the expected running time!



Want a different bound?

Want an even better probability? You just have to tweak the constant
factors!

Be more careful in defining a “good iteration” or just change 24 In(n) to
48 1In(n) or 100 In(n). D
T 5
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It all ends up hidden in the big-O anyway.

That's the power of concentration — the constant coefficient affects the

exponent of the probability.
-




Common Quicksort Implementations

A common strategy in practice is the "median of three” rule.

—
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hoose three elements (either at random or from specific spots). Take
the median of those for your pivot

Guarantees you don't have the worst possible pivot.

Only a small constant number of extra steps beyond the fixed pivot (find
the median of three numbers is just a few comparisons).

ﬁ\other strategy: find the true median (very fancy, very impractical: take
421)



[~ Monte Carlo Algorithms

Just some intuition



Algorithms with some probability of failure

There are also algorithms tha@esgive us the wrong answer. )
(Monte Carlo Algorithms)

Wait why would we accept a probability of failure?

Suppose your algorithm succeeds with probabilitikonly 1/n.

%j But given two runs of the algorltﬁm, you can tell which is er.

E.g. "find the biggest <blah>" — whichever is bigger is the better one.
— —~

How many indeﬁendent runs of the algorithm do we need to get the
right answer with high probability?



Small Probability of Failure

How many independent runs of the algorithm do we need to get the
right answer with high probability?

Probability of failure | |
k- ~ — —
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Choos€ k ~ In(n), and we get high probability of success. —
for example) independent runs gives you the right answer

withhighrprobability.

Even with very small chance of success, a moderately larger number of
iterations gives high probability of success. Not a guarantee, but close
enough to a guarantee for most purposes.
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