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Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
 and ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −

𝛿2𝜇

2

(Multiplicative) Chernoff Bound



Concentration Applications

A common pattern:

Figure out “what could possibly go wrong” – often these are dependent.

Use a concentration inequality for each of the things that could go 
wrong.

Union bound over everything that could go wrong. 



Frogs

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog jumping off an edge of the grid magically 
warps to the opposite edge (pac-man-style).

Bound the probability that at least one square ends up with at least 36 
frogs.

These events are dependent – adjacent squares affect each other! 



Frogs

For an arbitrary location:

There are 100 frogs who could end up there (those above, below, left, 
right, and at that location). Each with probability .2. Let 𝑋 be the number 
that land at the location we’re interested in.

ℙ 𝑋 ≥ 36 = ℙ 𝑋 ≥ 1 + 𝛿 20 ≤ exp −
4

5

2
⋅20

3
≤ 0.015

There are 25 locations. Since all locations are symmetric, by the union 
bound the probability of at least one location having 36 or more frogs is 
at most 25 ⋅ 0.015 ≤ 0.375.



Tail Bounds – Takeaways 

Useful when an experiment is random, but the expected value is the 
desired outcome (or just a good outcome).

Running a poll? What’s the probability that a random person says they 
will vote for you? Well it’s the fraction of people in the population that 
would vote for you. So 𝔼 𝑋𝑖  is your desired value.

Making widgets, some of which are defective, but on average you get 
more than you need? 𝔼[𝑊] is a good value.

In both cases you want to be close to your mean---tail bounds let you 
evaluate those chances.



Tail Bounds – Takeaways 

Useful when an experiment is complicated and you just need the 
probability to be small (you don’t need the exact value).

Choosing a minimum 𝑛 for a poll – don’t need exact probability of 
failure, just to make sure it’s small.

Designing probabilistic algorithms – just need a guarantee that they’ll 
be extremely accurate 

Learning more about the situation (e.g. learning variance instead of just 
mean, knowing bounds on the support of the starting variables) usually 
lets you get more accurate bounds.



Applications



Privacy Preservation

A real-world example (adapted from The Ethical Algorithm by Kearns 
and Roth; based on protocol by Warner [1965]).

And gives a sense of how randomness is actually used to protect 
privacy.



Privacy Preservation with Randomness

You’re working with a social scientist. They want to get accurate data on 
the rate at which people cheat on their romantic partners. 

We know about polling accuracy! 

Do a poll, call up a random sample of adults and ask them “have you 
ever cheated on your romantic partner?”

Use a tail-bound to estimate the needed number 𝑛 get a guaranteed 
good estimate, right?

You do that, and somehow, no one says they cheated.



What’s the problem?

People lie. 

Or they might be concerned about you keeping this data.

Databases can be leaked (or infiltrated. Or subpoenaed).

You don’t want to hold this data, and the people you’re calling don’t 
want you to hold this data.



Doing Better With Randomness

You don’t really need to know who was cheating. Just how many people 
were. 

Here’s a protocol:

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me “heads”

If the coin is tails and you have not ever cheated, please tell me “tails”



Will it be private?

If you are someone who has cheated, and you report heads can that be 
used against you? Not substantially – just say “no the coin came up 
heads!”

You discover your partner said heads, what’s the probability that they 
cheated? 



Will it be private?

If you are someone who has cheated on your spouse, and you report 
heads can that be used against you? Not substantially – just say “no the 
coin came up heads!”

ℙ 𝐶 𝐻 =
ℙ(𝐻|𝐶)⋅ℙ(𝐶)

ℙ(𝐻)
 =

1⋅ℙ(𝐶)
1

2
ℙ(𝐶) +1⋅ℙ(𝐶)

Is this a substantial change?

No. For real world values (~15%) of ℙ(𝐶), the probability estimate would 
increase (to ~26%). But that isn’t too damaging. 



But will it be accurate?

But we’ve lost our data haven’t we? People answered a different 
question. Can we still estimate how many people cheated?

Suppose you asked 100 people the “heads/tails” question, and 60 
people said “heads.” What do you predict would be the number of 
people who cheated on a partner?

Can you generalize your idea for 𝑛 people polled, and 𝑋 the number of 
people that said “heads”?



But will it be accurate?

But we’ve lost our data haven’t we? People answered a different question. 
Can we still estimate how many people cheated?

Suppose you poll 𝑛 people, and let 𝑋 be the number of people who said 
“heads” We’ll find an estimate 𝑌 of the number of people who cheated in the 
sample, and let 𝑝 be the true probability of cheating in the population.
 What should 𝑌 be? Can we draw a margin of error around 𝑌?

ℙ 𝑋𝑖 = 1 =
1

2
+

1

2
⋅ 𝑝

𝔼 𝑋 =
𝑛

2
+

1

2
𝔼 𝑌

We’ll define 𝑌 to be: 𝑌 = 2 𝑋 −
𝑛

2
. 

This is a definition, based on how the 𝔼[𝑌] should relate to the 𝔼[𝑋].



But will it be accurate?

𝑌 = 2 𝑋 −
𝑛

2

Var 𝑋 = Var ∑𝑋𝑖 = ∑Var 𝑋𝑖

Var 𝑋𝑖 ? It’s an indicator with parameter 𝑝 + 1 − 𝑝 ⋅
1

2
=

1

2
+

𝑝

2

So Var 𝑋𝑖 =
1

2
+

𝑝

2

1

2
−

𝑝

2

Var 𝑌 = 4Var 𝑋 = 4𝑛Var 𝑋𝑖 = 4𝑛
1

2
+

𝑝

2

1

2
−

𝑝

2
≤

4𝑛

4
= 𝑛

The variance is 4 times as much as it would have been for a non-
anonymous poll.



Can we use Chernoff?

What happens with n = 1000 people?

What range will we be within at least 95% of the time?

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
 and ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −

𝛿2𝜇

2

(Multiplicative) Chernoff Bound



A different inequality

If we try to use Chernoff, we’ll hit a frustrating block.

Since 𝜇 depends on 𝑝, 𝑝 appears in the formula for 𝛿. And we wouldn’t 
get an absolute guarantee unless we could plug in a 𝑝.

And it’ll turn out that as 𝑝 → 0 that 𝛿 → ∞ so we don’t say anything 
then.

Luckily, there’s always another bound…



 Can’t bound 𝛿 without bounding 𝑝

The right tail is the looser bound, so ensuring the right tail is less than 
2.5% gives us the needed guarantee.

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
= exp −

𝛿21000𝑝

3
≤ .025

−
𝛿21000𝑝

3
≤ ln(.025)

−𝛿2≤
3⋅ln .025

1000𝑝

𝛿 ≥
−3ln(.025)

1000𝑝

As 𝑝 → 0, 𝛿 → ∞ – we’re not actually making a claim anymore.



Hoeffding’s Inequality

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. Why?

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent RVs, each with range [0,1]. 
Let ത𝑋 = ∑𝑋𝑖/𝑛,  and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡2

Hoeffding’s Inequality



𝑌 = 2 𝑋 −
𝑛

2
 or 𝑋 =

𝑌+𝑛

2

𝑋 − 𝔼 𝑋

=
𝑌+𝑛

2
− 𝔼

𝑌+𝑛

2

=
𝑌+𝑛

2
− 𝔼

𝑌

2
−

𝑛

2

=
𝑌

2
− 𝔼

𝑌

2

=
1

2
𝑌 − 𝔼 𝑌  

So 𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if 
1

2
𝑌 − 𝔼 𝑌 ≥ 𝑡 iff 𝑌 − 𝔼 𝑌 ≥ 2𝑡.



Hoeffding’s Inequality

How close will we be with n=1000 with probability at least .95?

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent RVs, each with range [0,1]. 
Let ത𝑋 = ∑𝑋𝑖/𝑛,  and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡2

Hoeffding’s Inequality



Margin of Error

ℙ 𝑌 − 𝔼 𝑌 ≥ 𝑡 = ℙ 𝑋 − 𝔼 𝑋 ≥ 𝑡/2 ≤ 2 exp −2𝑛𝑡2 ≤ .05

For 𝑛 = 1000, we get:

2 exp −2𝑛
𝑡

2

2
≤ .05 ⇒ −

2000𝑡2

4
≤ ln .025 ⇒ 𝑡 ≤ .086. 

ℙ 𝑌 − 𝔼 𝑌 ≥ .086 ≤ .05

So our margin of error is about 8.6%.

To get a margin-of-error of 5% need 2 exp −2𝑛
.05

2

2
≤ .05

𝑛 ≥ 2952



How much do we lose?

We lose a factor of two in the length of the margin (equivalently, we’d 
need to talk to 4 times as many people to have the same confidence.

You can also control this tradeoff. 

Want more accuracy? Make it roll a die: report 1 if cheated (truth o/w)

Want more security? Make it Bernoulli with probability 𝑝 ≫
1

2
 or cheated 

have the same report (e.g. report “die roll 1 [and didn’t cheat]” or “die 
roll 2-6 [or did cheat]”



Will people actually admit to anything?

Yes, they actually will.

Ask Me Anything: Assessing Academic Dishonesty

By Nathan Brunelle and John R. Hott

When Nathan was at University of Virginia, he and a colleague ran this 
protocol, asking students whether they had cheated in their course.

They estimated about 40% of students cheated in one of their courses.

https://dl.acm.org/doi/pdf/10.1145/3328778.3372658


In The Real World

Injecting randomness to preserve privacy is a real thing.

Instead of having everyone flip a coin, “random noise” can be inserted 
after all the data has been collected.

Differential privacy is being used to protect the 2020 Census data. 

The overall count of people in each state is exact (well, exactly the data 
they collected). But the data per block or per city has been randomized 
to protect against revealing who lives where. 

This video nicely explains what’s involved. Notice that the accuracy 
guarantees come in the same “inside-margin-of-error-with-probability” 
guarantees we’ve been giving for our randomness (just much stronger).

https://www.youtube.com/watch?v=pT19VwBAqKA


More applications?

Concentration inequalities can help you tell the accuracy of predictions 
you make (or that you learn from data).

Next, we’ll see “maximum likelihood estimation”, a method of making 
predictions from data.

Later, we’ll hint at some other ML-related uses of running an 
experiment, designed such that 𝔼[𝑋] is some unknown-to-you value 
that’s too expensive to compute. 
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