More Tail Bounds | &2



Recap(Markov's Inequality)

Markov’s Inequality

Let X be a random variable
supported (only) on non-negative
numbers. For any t > 0

-

0 E[X] t



Recap(Chebyshev’s Inequality)

Chebyshev’s Inequality

Let X be a random variable. For
any t >0

P(lX — E[X]| =

p(| X-E[X]|21)

E[X] - t E[X] E[X] + t X



Recap(Markov’'s and Chebyshev’s)

Suppose you run a poll of 1000 people where in the true population
60% of the population supports you. What is the probability that the
poll is not within 10-percentage-points of the true value?

X = ¥X,/1000
E|X| =
Var(X) =



Recap(Markov’'s and Chebyshev’s)

Suppose you run a poll of 1000 people where in the true population
60% of the population supports you. What is the probability that the
poll is not within 10-percentage-points of the true value?

X = YX;/1000 Markov’s Inequality
= .6 3
E[X] = 1000 - 1000 5 Let X be a random variable
Var(X) = 1000 ot 3 supported (only) on non-negative
10007 12500 numbers. For any t > 0

px > 0 < E20




Recap(Markov’'s and Chebyshev’s)

Suppose you run a poll of 1000 people where in the true population
60% of the population supports you. What is the probability that the
poll is not within 10-percentage-points of the true value?

ChebysheV’s Inequality

X = ¥X;/1000

— .6 3
IE[X]=1OOO-m=E :
2 Let X be a random variable. For

Var(X) = 10007 10002 ~ 12500 anyt >0
P(|X — E[X]| =




Takeaway

Chebyshev gets more powerful as the variance shrinks.

Repeated experiments are a great way to cause that to happen.



Chernoft Bound

More Assumptions => Better Guarantee

(Multiplicative) Chernoff Bound

Let X, X,, ..., X,, be independent Bernoulli random variables.
Let X =YX;, and u = E[X]. Forany 0 <6 <1

2

PX >0+ 6)u) < exp (— 5T”) and P(X < (1 —-48)u) < exp (_5_




Chernoft Bound

Chernoff Bound (left tail) Chernoff Bound (right tail)

Let Xy, Xy, .., Xy be independent Let X, X,, ..., X,, be independent
Bernoulli random variables. Bernoulli random variables.

Let X = }.X;, and u = E[X]. For Let X = Y'X;, and u = E[X]. For
any0<6<1 any0<4<1

P(X < (1-6)u) <exp (‘%) P(X > (14 8)) < exp (_ 5%“)

p(X=(1-0)u) p(X=(1+93)u)

M- Op M = E[X] M+ O 24



Same Problem, New Solution

Suppose you run a poll of 1000 people where in the true population
60% of the population supports you. What is the probability that the
poll is not within 10-percentage-points of the true value?




Right Tail

Suppose you run a poll of 1000 people where in the true population
60% of the population supports you. What is the probability that the
poll is not within 10-percentage-points of the true value?

Want P (1;% = .7)

Chernoff Bound (right tail)

Let X3, X,, ..., X,, be independent
Bernoulli random variables.

Let X = YX;, and u = E[X]. For
any0<6<1

P(X=>(14+d6)u) <exp (— 67“)

2




Left Tail

Suppose you run a poll of 1000 people where in the true population
60% of the population supports you. What is the probability that the
poll is not within 10-percentage-points of the true value?

Want PP (1(% < .5)

Chernoff Bound (left tail)

Let X;, X,, ..., X;, be independent
Bernoulli random variables.

Let X =Y X;, and u = E|X]. For
any 0 <46 <1




Both Tails

Let E be the event that X is not between 500 and 700 (i.e. we're not
within 10 percentage points of the true value)

P(E) = P(X < 500) + P(X > 700)
<.0039 +.0003 =.0042

Less than 1%. That's a better bound than Chebyshev gave!



Wait a Minute

| asked Wikipedia about the “"Chernoff Bound” and | saw something
different?

This is the "easiest to use” version of the bound. If you need something
more precise, there are other versions.

Why are the tails different??

The strongest/original versions of “Chernoff bounds” are symmetric (1 +
d and 1 — § correspond), but those bounds are ugly and hard to use.

When computer scientists made the “easy to use versions”, they needed
to use some inequalities. The numerators now have plain old é’s, instead
of 1 + or 1 —. As part of the simplification to this version, there were

different inequalities used so you don't get exactly the same expression.



Wait a Minute

This is just a binomial!
Well if all the X; have the same probability. It does work if they're independent but
have different distributions. But there's bigger reasons to care...

The concentration inequality will let you control n easily, even as a
variable. That's not easy with the binomial.

What happens when n gets big?

Evaluating (igggg). 5110000 . 4910000 js frayght with chances for floating

point error and other issues. Chernoff is much better.



But Wait! There's More

For this class, please limit yourself to:
Markov, Chebyshev, and Chernoff, as stated in these slides...

But for your information. There's more.

Trying to apply Chebyshev, but only want a “one-sided” bound (and tired of
losing that almost-factor-of-two)Try Cantelli's Inequality

In a position to use Chernoff, but want additive distance to the mean instead
of multiplicative? They got one of those.

Have a sum of independent random variables that aren’t indicators, but are
bounded, you better believe Wikipedia's got one

Have a sum of random matrices instead of a sum of random numbers. Not
only is that a thing you can do, but the eigenvalue of the matrix concentrates

There's a whole book of these!



https://en.wikipedia.org/wiki/Cantelli%27s_inequality
https://en.wikipedia.org/wiki/Chernoff_bound#Additive_form_(absolute_error)
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality#General_case_of_bounded_random_variables
https://en.wikipedia.org/wiki/Matrix_Chernoff_bound
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/1juclfo/alma991618178901452

Tail Bounds - Takeaways

Useful when an experiment is complicated and you just need the
probability to be small (you don’t need the exact value).

Choosing a minimum n for a poll — don't need exact probability of
failure, just to make sure it's small.

Designing probabilistic algorithms — just need a guarantee that they'll
be extremely accurate

Learning more about the situation (e.g. learning variance instead of just
mean, knowing bounds on the support of the starting variables) usually
lets you get more accurate bounds.



Union Bound

Union Bound

For any events E, F
P(EVUF) < P(E) + P(F)

Proof? P(E U F) = P(E) + P(F) — P(E N F)
And P(ENF) > 0.



Union Bound
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Concentration Applications

A common pattern:

Figure out "what could possibly go wrong” - often these are dependent.

Use a concentration inequality for each of the things that could go
wrong.

Union bound over everything that could go wrong.



Frogs

There are 20 frogs on each location in a 5x5 grid. Each frog will
independently jump to the left, right, up, down, or stay where it is with
equal probability. A frog at an edge of the grid magically warps to the
corresponding edge (pac-man-style).

Bound the probability that at least one square ends up with at least 36
frogs.

These events are dependent - adjacent squares affect each other!



Frogs

For an arbitrary location:

There are 100 frogs who could end up there (those above, below, left,
right, and at that location). Each with probabillity .2. Let X be the number
that land at the location we're interested in.

P(X > 36) = P(X = (1 + 6)20) < exp (— (5)3'2()) < 0.015

There are 25 locations. Since all locations are symmetric, by the union
bound the probability of at least one location having 36 or more frogs is
at most 25 - 0.015 < 0.375.



Tail Bounds - Takeaways

Useful when an experiment is complicated and you just need the
probability to be small (you don’t need the exact value).

Choosing a minimum n for a poll — don't need exact probability of
failure, just to make sure it's small.

Designing probabilistic algorithms — just need a guarantee that they'll
be extremely accurate

Learning more about the situation (e.g. learning variance instead of just
mean, knowing bounds on the support of the starting variables) usually
lets you get more accurate bounds.



Tail Bounds - Summary

Random
Variable Type

Bound Type

Parameters
Needed

Bound

Comment

Markov's
Inequality

Any, but positive

Right tail
E[X], t = start point
of right tail

P(X>t)< X

Sucks most of the
time

Chebyshev's Inequality
Any

Both tails around the mean

E(X], Var(X), t = distance from
mean where tails start

- Var({X)
— r!

P(|X - E[X]| > ¢)

Good when variance is small(e.g.

mean of a large sample)

Chernoff Bound

X =31, X; where X; are independent
Bernoulli

Either left or right tail around the mean

u=E[X],d € [0,1] with (1 — d)u and
(1+ 6)p the starts of the left and right

tails
Left: P(X < (1 -d)u) < exp(- 2)
Right: P(X > (1 + d)u) < exp(—2L)

X; need not have the same p. Great for
large n

Union Bound
Any

Any union of events

Probabilities of E;'s

—._J!l

E; are usually events we want
to avoid with small P(E;)



