
More Joint Distributions CSE 312 Winter 25

Lecture 19



Announcements

Ed’s interface for the coding question is broken at the moment.
The underlying code is fine, but Ed won’t import a library we need.

Gradescope can run the code properly (or a local installation). 

Robbie has a ticket with Ed support to get our environment fixed; in the meantime, 
the coding question will be due with HW7 not HW6 in case you weren’t able to 
work on it.

Robbie is traveling at the end of this week (at SIGCSE)

TAs will guest lecture on Wednesday/Friday.

Robbie will have access to email but will be slower.



Multiple Random Variables



Analogues for continuous
Everything we saw today has a continuous version.

There are “no surprises”– replace pmf with pdf and sums with integrals. 



Different dice

Roll two fair dice independently. 
Let 𝑈 be the minimum of the two 
rolls and 𝑉 be the maximum

What is ℙ(𝑈 = 2|𝑉 = 3)?

ℙ 𝑈=2∩𝑉=3

ℙ 𝑉=3
=

2/16

5/16
=

2

5

𝑝𝑈|𝑉 2 3 =
2

5

𝑝𝑈,𝑉 𝑼=1 𝑼=2 𝑼=3 𝑼=4

𝑽=1 1/16 0 0 0

𝑽=2 2/16 1/16 0 0

𝑽=3 2/16 2/16 1/16 0

𝑽=4 2/16 2/16 2/16 1/16



Different dice

Find these values

𝑝𝑉|𝑈 2|1 =

𝑝𝑈|𝑉 1 2 =

𝑝𝑈|𝑉 4 1 =

𝑝𝑈,𝑉 𝑼=1 𝑼=2 𝑼=3 𝑼=4

𝑽=1 1/16 0 0 0

𝑽=2 2/16 1/16 0 0

𝑽=3 2/16 2/16 1/16 0

𝑽=4 2/16 2/16 2/16 1/16



Different dice

Find these values

𝑝𝑉|𝑈 2|1 =
𝑝𝑉,𝑈(2,1)

𝑝𝑈(1)
=

2/16

7/16
=

2

7

𝑝𝑈|𝑉 1 2 =
𝑝𝑈,𝑉(1,2)

𝑝𝑉(2)
=

2/16

3/16
=

2

3

𝑝𝑈|𝑉 4 1 =
𝑝𝑈,𝑉(4,1)

𝑝𝑉(1)
=

0

1/16
= 0

𝑝𝑈,𝑉 𝑼=1 𝑼=2 𝑼=3 𝑼=4

𝑽=1 1/16 0 0 0

𝑽=2 2/16 1/16 0 0

𝑽=3 2/16 2/16 1/16 0

𝑽=4 2/16 2/16 2/16 1/16



What about the continuous versions?

In the continuous case, everything is still a density function, not a mass 
function.

Joint density

Marginal density

Conditional density

Expectations, conditional expectations integrate 𝑥 ⋅ (cond)density(𝑥)

You aren’t getting a probability, you’re getting a density; have to
integrate to get a value.



Analogues for continuous
Everything we saw today has a continuous version.

There are “no surprises”– replace pmf with pdf and sums with integrals. 



Conditioning on probability 0

We said for discrete spaces, when ℙ 𝐵 = 0, ℙ(𝐴|𝐵) is undefined 
How can you condition on something that doesn’t happen?

Also, how can you have ℙ(𝐵) in the denominator?

For continuous spaces, we have to use densities to avoid the problem, 
but we can avoid the problem with densities!

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑌(𝑦)

ℙ(𝑌 = 𝑦) is 0, but the density might not be 0 there so this expression 
can be defined (and it works!). 
If density is 0 for 𝑌 = 𝑦, the conditional density is undefined there.



A note on independence

The definition of independence says 𝑋, 𝑌 independent if and only if

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌(𝑦) or 𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 𝑓𝑌(𝑦) (as appropriate)

There’s often a nice shortcut. If 𝑋, 𝑌 are independent then joint support 
of 𝑋, 𝑌 (denoted Ω𝑋,𝑌) must be Ω𝑋 × Ω𝑌.

Joint support is { 𝑥, 𝑦 : 𝑝𝑋,𝑌 𝑥, 𝑦 > 0}. 

Often easier to verify dependence when those are different (especially 
in the continuous case).

But note this is a single implication not an if-and-only-if.



Continuous definitions and theorems

Conditional expectation:

𝔼 𝑋 Y = y = ∞−

∞
𝑥 ⋅ 𝑓𝑋|𝑌(𝑥|𝑦) d𝑥

LTE:

𝔼 𝑋 = ∞−

∞
𝔼[𝑋|𝑌 = 𝑦] ⋅ 𝑓𝑌(𝑦) dy

LTP:

ℙ 𝐴 = ∞−

∞
ℙ(𝐴|𝑋 = 𝑥) ⋅ 𝑓𝑋(𝑥) d𝑥

𝑋 is continuous; integrating over all values for 𝑋 gives the full space



Covariance



Covariance

We sometimes want to measure how “intertwined” 𝑋 and 𝑌 are – how 
much knowing about one of them will affect the other.

If 𝑋 turns out “big” how likely is it that 𝑌 will be “big” how much do they 
“vary together”

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀]

Covariance



If 𝑋, 𝑌 go in the same 
direction

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀]

Covariance

If 𝑋, 𝑌 go in the opposite 
directions



Covariance

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2Cov(𝑋, 𝑌)

That’s consistent with our previous knowledge for independent 
variables. (for 𝑋, 𝑌 independent, 𝔼 𝑋𝑌 = 𝔼 𝑋 𝔼[𝑌]). 

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?
Before you calculate, make a 

prediction. What should it be?



Covariance

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)? Cov(𝑋, 𝑌)?

Var 𝑋 = Var 𝑌 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 1 − 02 = 1

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼[𝑋]𝔼[𝑌]

𝔼 𝑋𝑌 =
1

2
⋅ −1 ⋅ 1 +

1

2
1 ⋅ −1 = −1

Cov 𝑋, 𝑌 = −1 − 0 ⋅ 0 = −1.

Var 𝑋 + 𝑌 = 1 + 1 + 2 ⋅ −1 = 0



Covariance, Another example

Let 𝑋 be a Bernoulli RV with probability 𝑝 of success.

Let 𝑌 = 𝑋 (𝑌 is 𝑋, not an iid copy, literally the same experiment)

Let 𝑍 = −𝑋

Let 𝑊 be an independent Bernoulli, indentically distributed to 𝑋

Find

Cov 𝑋, 𝑌 , Cov 𝑋, 𝑍 , Cov(𝑋, 𝑊)



Covariance, Another example

Let 𝑋 be a Bernoulli RV with probability 𝑝 of success.

Let 𝑌 = 𝑋 (𝑌 is 𝑋, not an iid copy, literally the same experiment)

Let 𝑍 = −𝑋

Let 𝑊 be an independent Bernoulli, indentically distributed to 𝑋

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 𝔼[𝑌]

= 1 ⋅ 1 ⋅ 𝑝 + 0 ⋅ 0 ⋅ 1 − 𝑝 − 𝑝 ⋅ 𝑝

= 𝑝 − 𝑝2 = 𝑝(1 − 𝑝)

Hey, that’s the variance of 𝑋. This is a pattern: Cov(𝑋, 𝑋) = Var(𝑋)



Covariance, Another example

Let 𝑋 be a Bernoulli RV with probability 𝑝 of success.

Let 𝑌 = 𝑋 (𝑌 is 𝑋, not an iid copy, literally the same experiment)

Let 𝑍 = −𝑋

Let 𝑊 be an independent Bernoulli, indentically distributed to 𝑋

Cov 𝑋, 𝑍 = 𝔼 𝑋𝑌 − 𝔼 𝑋 𝔼[𝑌]

= 1 ⋅ −1 ⋅ 𝑝 + 0 ⋅ −0 ⋅ 1 − 𝑝 − 𝑝 ⋅ −𝑝

= −𝑝 − −𝑝2 = −𝑝(1 − 𝑝)

General pattern: Cov 𝑋, −𝑌 = −Cov(𝑋, 𝑌)



Covariance, Another example

Let 𝑋 be a Bernoulli RV with probability 𝑝 of success.

Let 𝑌 = 𝑋 (𝑌 is 𝑋, not an iid copy, literally the same experiment)

Let 𝑍 = −𝑋

Let 𝑊 be an independent Bernoulli, indentically distributed to 𝑋

Cov 𝑋, 𝑊 = 𝔼 𝑋𝑊 − 𝔼 𝑋 𝔼[𝑊]

= 1 ⋅ 1 ⋅ 𝑝2 + 1 ⋅ 0 ⋅ 𝑝 1 − 𝑝 + 0 ⋅ 1 ⋅ 1 − 𝑝 𝑝 + 0 ⋅ 0 ⋅ 1 − 𝑝 2 −
𝑝 ⋅ 𝑝

= (𝑝2) − 𝑝2 = 0

General pattern: if 𝑋, 𝑌 independent Cov(𝑋, 𝑌) = 0



A Few Notes

Covariance is an un-normalized number.

It measures both how intertwined 𝑋, 𝑌 are and in some sense how much 
𝑋, 𝑌 vary in the first place (if you multiply both 𝑋, 𝑌 by 2, the strength of 
the relationship intuitively is the same, but covariance increases).

If you want just the strength of the relationship, you probably want the 
“correlation coefficient”: 

Cov(𝑋,𝑌)

Var 𝑋 Var 𝑌
   always between −1 and 1.

Covariance directly measures only “linear” relationships; if 𝑌 depends on 
𝑋2, the covariance might not be as high as you expect. 

If dealing with real data, look at a plot to see if you should be looking 
for a linear relationship in the first place. 



A Continuous-ish Example

Recall from Friday: You will flip 2 (independent, fair coins). Call the 
number of heads 𝑋. Then (independently of the coin flips) draw an 
exponential random variable 𝑌 from the distribution Exp(𝑋 + 1). 

Let’s find the PDF of 𝑌.

Let 𝑔𝜆 𝑥 = 𝜆𝑒−𝜆𝑥, i.e. density for Exp(𝜆) (for 𝑥 ≥ 0)

𝑓𝑌 𝑦 = 𝑔1 𝑦 ⋅
1

4
+ 𝑔2 𝑦 ⋅

1

2
+ 𝑔3 𝑦 ⋅

1

4

𝑓𝑌 𝑦 =
1

4
𝑒−𝑦 +

1

2
⋅ 2 ⋅ 𝑒−2𝑦 +

1

4
⋅ 3𝑒−3𝑦 (for 𝑦 ≥ 0)

Notice this isn’t an exponential random variable!



A Continuous-ish Example 

Now we can check that expectation…

𝔼 𝑌 = 0

∞
𝑦

1

4
𝑒−𝑦 +

1

2
⋅ 2 ⋅ 𝑒−2𝑦 +

1

4
⋅ 3𝑒−3𝑦 d𝑦

= 0

∞
𝑦 ⋅

1

4
𝑒−𝑦𝑑𝑦 + 0

∞
𝑦 𝑒−2𝑦𝑑𝑦 + 0

∞
𝑦

1

4
⋅ 3𝑒−3𝑦𝑑𝑦

Integral of 𝑦𝑒−𝑦 will be 1, since that’s the expectation of Exp(1)

=
1

4
⋅ 1 +

1

2
0

∞
2𝑦 𝑒−2𝑦𝑑𝑦 +

1

4
⋅ 0

∞
𝑦 3𝑒−3𝑦𝑑𝑦

Setup for same trick, Exp(2), Exp(3)

=
1

4
⋅ 1 +

1

2
⋅

1

2
+

1

4
⋅

1

3
=

1

4
+

1

4
+

1

12
=

7

12
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