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X~Unif(a, b) X~Ber(p) X~Geo(p)

> 1 px(0) =1-p; _ (™ k(q _ -k k) = (1 — p)k-1
pxli) = —— SR px(i) = ()P = )" | px(i) = (1= )" 'p
a+b

EX=— E[X] = p E[X] = np
Var(X)=(b_a)(b_a+2)

12 Var(X) = p(1 —p) Var(X) = np(1 —p)

X~NegBin(r, p) X~HypGeo(N,K,n)

k—1 K\(N-K
r—1 pX(k) = (k)((lr\:;)—k
K

IE[X] = nﬁ
K(N — K)(N — n)

NZ(N — 1)

Var(X) =




Zoo Takeaways

We skipped hypergeometric; slides are there, you can use the formulas!
Drawing without replacement from an urn is the situation.

You can do relatively complicated counting/probability calculations
much more quickly than you could week 1!

You can now explain why your problem is a zoo variable and save
explanation on homework (and save yourself calculations in the future).

Don't spend extra effort memorizing...but be careful when looking up
Wikipedia articles.

The exact definitions of the parameters can differ (is a geometric random variable
the number of failures before the first success, or the total number of trials
including the success?)






What have we done over the past 5 weeks?

Counting
Combinations, permutations, indistinguishable elements, starts and bars, inclusion-
exclusion...

Probability foundations
Events, sample space, axioms of probability, expectation, variance

—Conditional probability

Conditioning, Independence, Bayes’ Rule

Refined our intuition
Especially around Bayes' Rule




What's next?

Continuous random variables.
\ R

So far our sample spaces have been countable. What happens if we want to choose
a random real number?

How do expectation, variance, conditioning, etc. change in this new context?
Mostly analogous to discrete cases, but with integrals instead of sums.

nalysis when it's inconvenient (or impossible) to exactly calculate
probabilities.

Central Limit Theorem (approximating discrete distributions with continuous ones)
Tail Bounds/Concentration (arguing it's unlikely that a random variable is far from its

expectation)
Q first taste of making predictions from data (i.e., a bit of ML)



Today

/_Continuous Probability

/}frobability Density Function
Cumulative Distribution Function

Goal for today is to ge&t intuition.on what's different in the continuous
case. Your goal today is to start Building up a gut-feeling of what's
happening.

ASK QUESTIONS, (always, but today especially).

_—___—_—_;




~ | Continuous Random Variables



Continuous Random Variables

We'll need continuous probability spaces and continuous random
variables to describe experiments that have uncountably-infinite sample

spaces. -~
~e.g. all real numbers

How long until the next bus shows up?
What location does a dart land?



Continuous Random Variables

Wait, we're computer scientists. Computers don't do real numbers, why
should we? ™ —

Continuous random variables will be a useful model for enormous

sample spaces. The math will be easier. ———
_

Example: polling a lar ulation. The sample space is actually
discrete. But we're going to round the result anyway. Make it continuous
first for easier math, then round.



Why Need New Rules?

We want to choose a uniformly random real number between 0 and 1.
What's the probability the number is between 0.4 and 0.57

e

~— _— \
For discrete random variables, we'd ask for % TE)

So we det —

00)

The mathematical tools to get consistent answers from expressions like
those is calculus.



Let's start with the pmf ><

For discrete random variables, we defined the pmtf: py(k) =P = k)

We can't havﬁm’r quite Tike we did for discrete random variables. Let
X be a random real number between 0 and 1.

P(X =.1) =77

p—— :
Let's try to malftain as many rules as we can...

py(k) =0 fx(k) =0
Use fy instead of py
z py(w) =1 ] fx (k) dk : \ to remember it’s

different .



The probability density function

For Continuous random variables, the analogous object is the
“probability density function” we write fx (k) instead of py (k)

Idea: Make it "work right” for events since single outcomes don't make
sense. — -

b
Pla<X<b)=c f fx(2)dz =c integrating is analogous to sum.




The probability density function

For Continuous random variables, the analogous object is the

"probability density function” we write fx (k) instead of px (k)

|dea: Make it “work right” for events since single outcomes don't make
sense.

b
Pla<X<b)=c J fx(z2)dz =c integrating is analogous to sum.
a

Let’s derive an example PDF together!

For a uniform random real number in [O,1]




The probability density function

For Continuous random variables, the analogous object is the
“probability density function” we write fx (k) instead of py (k)

Idea: Make it "work right” for events since single outcomes don't make
sense.

PO<X<1)=1 integrating is analogous to sum.
\ ",>/‘

[P(X Is negative) =0

\

P(4<X<9=1 S IR




The probability density function

For Continuous random variables, the analogous object is the
“probability density function” we write fx (k) instead of py (k)

Idea: Make it "work right” for events since single outcomes don't make
sense.

1
PO<X<1)= f fx(z2)dz =1 Integrating is analogous to sum.
—_——— S — 0 —~
: : Y
P(X = =
(Xisnegatve) =0 | | fidr=0
J— — P =—
.5
P4<X<.5)=.1 Jr fy(z) dz = .1
4

—

—




PDF for uniform

Let X be a uniform real number between 0 and 1.
What should fx (k) be to make all those events integrate to the right

values?

sy Mo q
\
NS
Q/ &




Probability Density Function

So P(X =.1) =77

_—
fx(1) =1
N
The number that best represents P(X = .1)
This is different from fy(x) S

For continuous probability spaces:

Impossible events have probability 0,
but some probability 0 events might be possible.

So..what is fyx(x)??7?
e




Using the PDF

Let’s look at a different pdf...
Compare the events: X = .2 and X = .5

\,—d
P(2—€/2<X<.2+4+¢€/2) D
T —2+€/2
What will the pdf give? f_z_e/z fx(2) dz
\
fx(2) € -
= —
=
What happens if we look at the ratio
P(X=.2)

(P.P(Xz.S)




Using the PDF

Let's look at a different pdf...
Compare the events: X = .2and X = .5

P(2—€/2<X<.2+€/2)
—2+€/2

What will the pdf give? 2-¢/2 fx(z) dz
fx(2)-€

What happens if we look at the ratio

P(x~2) _ P(2-55X2+5)  ery(2)
P(X=.5) IP(.S—%SXS.5+§) ef x(.5)
N~




So what's the pdf?

It's the number that when integrated over gives the probability of an
event.

Equivalently, it's number such that:
-integrating over all real numbers gives 1.

Fomparing fx(k) and fx(¥) gives the relative chances of X being near
k or .






What's a CDF?

S The Cumulative Distribution Function Fy (k) = P(X < k)

analogous to the CDF for discrete variables.

Fx(k) =P(X <k) = f_koo fx(z) dz
\//_/

So how do | get from CDF to PDF? Taking the derivative!
d d [ ck
(k) =2 (5, fx(2) dz) = fy ()



Comparing Discrete and Continuous
| DisrtoRandom Varigbles | Confinuous Rondom Variables

Probability 0 Equivalent to impossible All impossible events have probability 0, but not
conversely.

Relative Chances PMF: py (k) = P(X = k) X(k) gives chances relative to fy (k')
Events Sum over PMF to get probability Integrate PDF to get probability
—= —_

O\ n (e B Sum up PMF to get CDF. Integrate PDF to get CDF.
PMF Look for “breakpoints” in CDF to get PMF. Differentiate CDF to get PDF.

> X(@) - px(@) | 2 r@a

W — 0O
' 9(X@)) - px(@) | 9@ £ dz
w — 00

271 _ 2 °°
E[x*] — (E[XD E[X2] — (E[X])? = f_ (z — E[X])?fy(2) dz



What about expectation?

For a random variable X, we define;

E[X] = [_. X(2) fx(2) dz

Just replace summing over the pmf with integrating the pdf.
It still represents the average value of X.



Expectation of a function

For any function g and any continuous random variable, X:

El[gX)] = [ gX(@) - fx(z) dz

Again, analogous to the discrete case; just replace summation with
integration and pmf with the pdf.

We're going to treat this as a definition.

Technically, this is really a theorem; since f() is the pdf of X and it only
gives relative likelihoods for X, we need a proof to guarantee it “works”
for g(X).

Sometimes called “Law of the Unconscious Statistician.”



Linearity of Expectation

Still true!
ElaX + bY + c|] = aE[X] + BE[Y] + ¢

For all X,Y; even if they're continuous.

Won't show you the proof — for just E[aX + b], it's
E[aX + b] = [ [aX(k) + b]fx (k) dk

= [ ax(o) fy()dk + [~ bfy(k)dk

=af" XU fx()dk+b [ fy()dk
= aE[X] + b



Variance

No surprises here

Var(X) = E[X?| — (E[X])? = f fx(k)(X(k) — E[X])? dk




Let's calculate an expectation|e =

.

\

1

b—a
0

ifa<z<b

otherwise

Let X be a uniform random number between a and b.

00

EX] = [z fx(2) dz




Let's calculate an expectation

Let X be a uniform random number between a and b.

Elx]= [,z fx(2) dz
=[" z- Odz+f z - —dz+fbooz-0dz

—0+f —dz+0

2 b b? a? b*—a* _ (b+a)(b- a)

Z
T 20-a) 20-a) 2-a)  2(b-a)

2(b—a)

Zz=a

a+b
2



What about E|g(X)]

Let X~Unif(a, b), what about E[X?]?

00

E[X?] = [7, 22 fx(2)dz

= f_aOOZZ'Odz-l-ffZZ -ﬁdz+fboozz-0dz

b ,
=O+fazz-icz+0

1 z3

b—a 3

b _1(b3_a_3)_ 1 (b — )(2_|_ b+b2)
= = 30— a)a a

a’+ab+b?
3




L et’'s assemble the variance

Var(X) = E[X?] — (E[X])?

_a’+ab+b%  (a+b\?
— 3 (T)
__4(a*+ab+b?)  3(a*+2ab+b?)
- 12 B 12
a’-2ab+b?

12
_ (a-b)?
12




Continuous Uniform Distribution

X~Unif(a, b) (uniform real number between a and b)

\
‘ -

PDF: fy(k) = {p—a TG SKSD
L0 otherwise
0 ifk <a
CDF: Fy(k) = I;_—Z ifa<k<bh
1 ifk=>b
E[X] =%
(b—a)?
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