Random Variables CSE 312 Spring 24 Lecture 10

Random Variable

What's a random variable?

Formally

Random Variable

 $X: \Omega \to \mathbb{R}$ is a random variable $X(\omega)$ is the summary of the outcome ω

Informally: A random variable is a way to **summarize** the important (numerical) information from your outcome.

The sum of two dice

EVENTS

. . .

We could define

 $E_2 =$ "sum is 2"

 $E_3 =$ "sum is 3"

 $E_{12} =$ "sum is 12"

And ask "which event occurs"?

RANDOM VARIABLE

 $X: \Omega \to \mathbb{R}$ X is the sum of the two dice.

More random variables

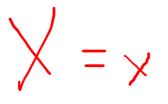
From one sample space, you can define many random variables.

Roll a fair red die and a fair blue die

. . .

Let *D* be the value of the red die minus the blue die D(4,2) = 2Let *S* be the sum of the values of the dice S(4,2) = 6Let *M* be the maximum of the values M(4,2) = 4

Notational Notes



We will always use capital letters for random variables.

It's common to use lower-case letters for the values they could take on.

Formally random variables are functions, so you'd think we'd write X(H, H, T) = 2

But we nearly never do. We just write X = 2

Support (Ω_X)

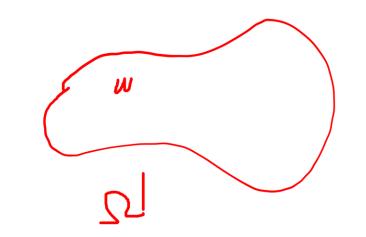
The "support" (aka "the range") is the set of values X can actually take.

We called this the "image" in 311.

D (difference of red and blue) has support $\{-5, -4, -3, ..., 4, 5\}$ *S* (sum) has support $\{2, 3, ..., 12\}$ What is the support of *M* (max of the two dice)

Probability Mass Function

Often we're interested in the event $\{\underline{\omega}: X(\omega) = x\}$



Which is the event...that X = x.

We'll write $\mathbb{P}(X = x)$ to describe the probability of that event So $\mathbb{P}(S = 2) = \frac{1}{36'} \mathbb{P}(S = 7) = \frac{1}{6}$

The function that tells you $\mathbb{P}(X = x)$ is the "probability mass function" We'll often write $p_X(x)$ for the pmf.

Partition

A random variable partitions Ω .

Let *T* be the number of twos in rolling a (fair) red and blue die.

$$p_T(0) = 25/36$$

 $p_T(1) = 10/36$
 $p_T(2) = 1/36$

	D2=1	D2=2	D2=3	D2=4	D2=5	D2=6
D1=1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1.6)
D1=2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
D1=3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
D1=4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
D1=5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
D1=6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Try It Yourself

 \times

There are 20 balls, numbered 1,2,...,20 in an urn.

You'll draw out a size-three subset. (i.e. without replacement)

 $\Omega = \{\text{size three subsets of } \{1, ..., 20\} \}, \mathbb{P}() \text{ is uniform measure.}$ Let X be the largest value among the three balls.

If outcome is $\{4,2,10\}$ then X = 10. Write down the pmf of X

Try It Yourself

There are 20 balls, numbered 1,2,...,20 in an urn.

You'll draw out a size-three subset. (i.e. without replacement)

Let X be the largest value among the three balls.

$$p_X(x) = \begin{cases} \binom{x-1}{2} / \binom{20}{3} & \text{if } x \in \mathbb{N}, \ 3 \le x \le 20 \\ 0 & \text{otherwise} \end{cases}$$

Good check: if you sum up $p_X(x)$ do you get 1? Good check: is $p_X(x) \ge 0$ for all x? Is it defined for all x?

Random Variable

What's a random variable?

Formally

Random Variable

 $X: \Omega \to \mathbb{R}$ is a random variable $X(\omega)$ is the summary of the outcome ω

Support Ω_X the set of values X can take.

Probability Mass Function (pmf $p_X(x)$) on input x, tells you $\mathbb{P}(X = x)$.

Informally: A random variable is a way to **summarize** the important (numerical) information from your outcome.

Describing a Random Variable

The most common way to describe a random variable is the PMF. But there's a second representation: $\sqrt{=} \times$

The cumulative distribution function (CDF) gives the probability $X \le x$ More formally, $\mathbb{P}(\{\omega: X(\omega) \le x\})$ Often written $F_X(x) = \mathbb{P}(X \le x)$

$$F_X(\underline{x}) = \sum_{i:i \le x} p_X(i)$$

What is the CDF of X where

X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)

 $[, \ldots, X]$

What is the CDF of X where

X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)

$$F_X(x) = \begin{cases} 0 \\ \binom{|x|}{3} \\ 1 \end{cases}$$
 if 2

if x < 3
f $3 \le x \le 20$
otherwise

What is the CDF of X where

X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)

$$F_X(x) = \begin{cases} 0 & \text{if } x < 3\\ \binom{\lfloor x \rfloor}{3} / \binom{20}{3} & \text{if } 3 \le x \le 20\\ 1 & \text{otherwise} \end{cases}$$

Good checks: Is $F_X(\infty) = 1$? If not, something is wrong.
Is $F_X(x)$ increasing? If not something is wrong.
Is $F_X(x)$ defined for all real number inputs? If not something is wrong.

Two descriptions

PROBABILITY MASS FUNCTION

Defined for all \mathbb{R} inputs.

Usually has "0 otherwise" as an extra case.

 $\sum_{x} p_X(x) = 1$ $0 \le p_X(x) \le 1$

 $\sum_{z:z \le x} p_X(z) = F_X(x)$

CUMULATIVE DISTRIBUTION FUNCTION Defined for all \mathbb{R} inputs. Often has "0 otherwise" and 1 otherwise" extra cases Non-decreasing function $0 \leq F_X(x) \leq 1$ $\lim_{x\to-\infty}F_X(x)=0$ $\lim F_X(x) = 1$ $\chi \rightarrow \infty$

More Random Variable Practice

Roll a fair die n times. Let Z be the number of rolls that are 5s or 6s.

What is the pmf?

Don't try to write the CDF...it's a mess...

Or try for a few minutes to realize it isn't nice.

More Random Variable Practice

Roll a fair die n times. Let Z be the number of rolls that are 5s or 6s.

What's the probability of getting exactly k 5's/6's? Well we need to know which k of the n rolls are 5's/6's. And then multiply by the probability of getting exactly that outcome

$$p_{Z}(z) = \begin{cases} \binom{n}{z} \cdot \left(\frac{1}{3}\right)^{z} \ \left(\frac{2}{3}\right)^{n-z} & \text{if } z \in \mathbb{N}, 0 \le z \le n \\ 0 & \text{otherwise} \end{cases}$$

Expectation

Expectation The "expectation" (or "expected value") of a random variable X is: $\mathbb{E}[X] = \sum_{k} k \cdot \mathbb{P}(X = k)$

Intuition: The weighted average of values *X* could take on. Weighted by the probability you actually see them.

Example 1

Flip a fair coin twice (independently) Let *X* be the number of heads.

 $\Omega = \{\underline{TT}, \underline{TH}, HT, HH\}, \mathbb{P}()$ is uniform measure.

$$\mathbb{E}[X] = \frac{1}{4} \cdot \underline{0} + \frac{1}{2} \cdot \underline{1} + \frac{1}{4} \cdot \underline{2} = 0 + \frac{1}{2} + \frac{1}{2} = 1.$$

Example 2

You roll a biased die.

It shows a <u>6 with probability</u> $\frac{1}{3}$, and 1,..., 5 with probability 2/15 each. Let X be the value of the die. What is $\mathbb{E}[X]$?

$$\frac{1}{3} \cdot 6 + \frac{2}{15} \cdot 5 + \frac{2}{15} \cdot 4 + \frac{2}{15} \cdot 3 + \frac{2}{15} \cdot 2 + \frac{2}{15} \cdot 1$$
$$= 2 + \frac{2(5+4+3+2+1)}{15} = 2 + \frac{30}{15} = 4$$

 $\mathbb{E}[X]$ is not just the most likely outcome!

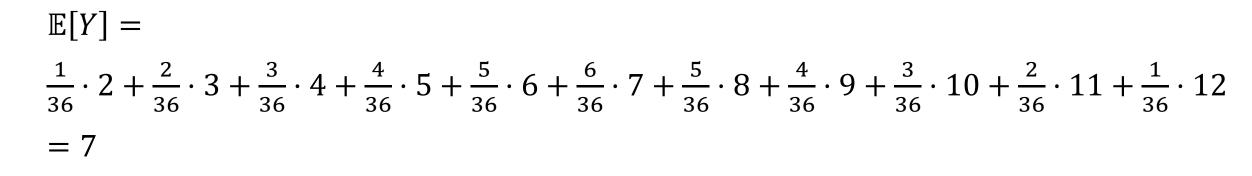
Let X be the result shown on a fair die. What is $\mathbb{E}[X]$?

Let Y be the sum of two (independent) fair die rolls. What is $\mathbb{E}[Y]$?

Let X be the result shown on a fair die. What is $\mathbb{E}[X]$

$$6 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$$
$$= \frac{21}{6} = 3.5$$

 $\mathbb{E}[X]$ is not necessarily a possible outcome! That's ok, it's an average!



 $\mathbb{E}[Y] = 2\mathbb{E}[X]$. That's not a coincidence...we'll talk about why on Friday.

Subtle but Important

X is random. You don't know what it is (at least until you run the experiment).

 $\mathbb{E}[X]$ is not random. It's a number. You don't need to run the experiment to know what it is.

That's for events...what about random variables?

Independence (of random variables)

X and Y are independent if for all k, ℓ $\mathbb{P}(X = k, Y = \ell) = \mathbb{P}(X = k)\mathbb{P}(Y = \ell)$

We'll often use commas instead of \cap symbol.

The "for all values" is important.

We say that the event "the sum is 7" is independent of "the red die is 5" What about S = "the sum of two dice" and R = "the value of the red die"

The "for all values" is important.

We say that the event "the sum is \underline{Z} " is independent of "the red die is $\underline{5}$ " What about S = "the sum of two dice" and R = "the value of the red die"

NOT independent.

 $\mathbb{P}(S = 2, R = 5) \neq \mathbb{P}(S = 2)\mathbb{P}(R = 5)$ (for example)

Flip a coin independently 2n times.

Let X be "the number of heads in the first n flips."

Let Y be "the number of heads in the last n flips."

X and Y are independent.

Mutual Independence for RVs

A little simpler to write down than for events

Mutual Independence (of random variables)

 X_1, X_2, \dots, X_n are mutually independent if for all x_1, x_2, \dots, x_n $\mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_1)\mathbb{P}(X_2 = x_2) \cdots \mathbb{P}(X_n = x_n)$

DON'T need to check all subsets for random variables... But you do need to check all values (all possible x_i) still.

What does Independence give you?

 $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Var(X + Y) = Var(X) + Var(Y)

Infinite sequential process

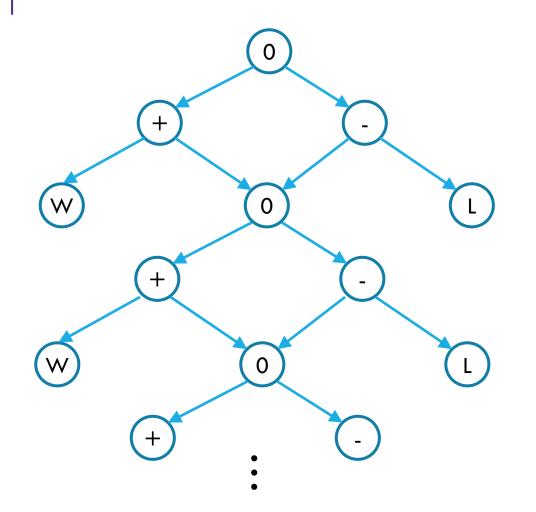
In volleyball, sets are played first team to

- Score 25 points
- Lead by at least 2

At the same time wins a set.

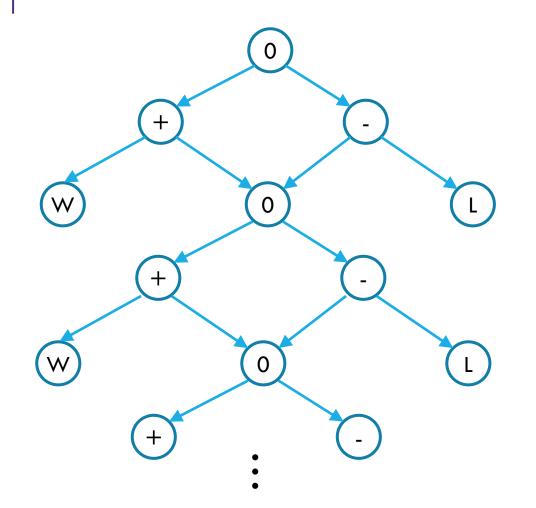
Suppose a set is 23-23. Your team wins each point independently with probability p. What is the probability your team wins the set?

Sequential Process



 $\mathbb{P}(win from even) = p^2 + 2p(1-p)\mathbb{P}(win from even)$

Sequential Process



 $\mathbb{P}(win from even) = p^2 + 2p(1-p)\mathbb{P}(win from even)$

$$x - x[2p - p^{2}] = p^{2}$$
$$x[1 - 2p + p^{2}] = p^{2}$$

$$x = \frac{p^2}{p^2 - 2p + 1}$$