Independence

Independence

Two events A, B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

You'll sometimes see this called "statistical independence" to emphasize that we're talking about probabilities (not, say, physical interactions).

If A, B both have non-zero probability then $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(B|A) = \mathbb{P}(B)$

38

Chain Rule

We defined conditional probability as: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ Which means $\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$

Chain Rule

$$\begin{split} & \mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) \\ & = \mathbb{P}(A_n | A_1 \cap \dots \cap A_{n-1}) \cdot \mathbb{P}(A_{n-1} | A_1 \cap \dots \cap A_{n-2}) \cdots \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_1) \end{split}$$

Conditional Independence Example

You have two coins. Coin *A* is fair, coin *B* comes up heads with probability **0.85**.

You will roll a (fair) die, if the result is odd flip coin *A* twice (independently); if the result is even flip coin *B* twice (independently)

Let C_1 be the event "the first flip is heads", C_2 be the event "the second flip is heads", O be the event "the die was odd"

Are C_1 and C_2 independent? Are they independent conditioned on O?

17

What about $\mathbb{P}(T B)$?	You have three red marbles and one blue marble in your left pocket, and one red marble and two blue marbles in your right pocket. if it's heads, you'll draw a marble (uniformly) from your left pocket, if it's tails, you'll draw a marble (uniformly) from your right pocket.
Pause, what's your intui	tion?
Is this probability	
A. less than $\frac{1}{2}$	
B. equal to $\frac{1}{2}$	
C. greater than ½	
-	