

9

We've seen lots of ways to count

Sum rule (split into disjoint sets) Product rule (use a sequential process) Combinations (order doesn't matter) Permutations (order does matter) Principle of Inclusion-Exclusion Complementary Counting "Stars and Bars" $\binom{n+k-1}{k-1}$ Niche Rules (useful in very specific circumstances) Binomial Theorem Pigeonhole Principle

Uniform Probability Space

The most common probability measure is the **uniform** probability measure. In the uniform measure, for every event E

 $\mathbb{P}(E) = \frac{|E|}{|\Omega|}.$

Let your sample space be all possible outcomes of a sequence of 100 coin tosses. Assign the uniform measure to this sample space. What is the probability of the event "there are exactly 50 heads?

A. $\binom{100}{50}/2^{100}$

- B. 1/101
- C. 1/2
- D. 1/2⁵⁰

E. There is not enough information in this problem.

Probability Space

Probability Space

A (discrete) probability space is a pair (Ω, \mathbb{P}) where: Ω is the sample space $\mathbb{P}: \Omega \to [0,1]$ is the probability measure.

 \mathbb{P} satisfies:

• $\mathbb{P}(x) \ge 0$ for all x

•
$$\sum_{x \in \Omega} \mathbb{P}(x) = 1$$

• If $E, F \subseteq \Omega$ and $E \cap F = \emptyset$ then $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F)$