Reference Sheet: Counting, Discrete Probability

11 . Binomial Tt

Letz,y € Rand n € N a positive integer. Then: (z +3)™ = S7_, (V)z*

n—k

Theorem: Principle of Inclusion-Exclusion (PIE)

2events: |[AUB| = |A|+ |B| — |AN B|

k events: singles - doubles + triples - quads + ...

3events: [AUBUC| = |A|+ |B|+|C| - |[ANB|—|ANC| — |BNC|+]|ANBNC

Theorem: Pigeonhole Principle

Definition: Mutual Independence (Events)

If there are n pigeons we want to put into k holes (where n > k), then
at least one pigeonhole must contain at least 2 (or to be precise, [n/k])
pigeons.

Definition: Key Probability Definitions

The sample space is the set 2 of all possible outcomes of an experiment.
An event is any subset £ C Q.
Events E and F' are mutually exclusive if E N F' = (.

Definition: Probability space

A probablity space is a pair (2, P), where €2 is the sample space
P: Q — [0, 1] is a probability measure such that -, P (z) = 1.
The probability of an event E C QisP (E) = >° .5 P (2)-

Definition: Conditional Probability

P[AN B

P[A| B] = P T5]

Theorem: Bayes Theorem

P[B | A]P[A]

PIAIB) = =5

Definition: Partition

Non-empty events E1, ..., E,, partition the sample space (2 if:

* (Exhaustive) E1 U Ex U ---UE, = {J;_; E; = Q (they cover
the entire sample space).

* (Pairwise Mutually Exclusive) Foralli # j, E; N E; = () (none
of them overlap)

Theorem: Law of Total Probability (LTP)

If events E1, . . ., B, partition €2, then for any event F:

PIFl = S PIFNE] =Y PF | B]P(E]

i=1 =1

Theorem: Bayes Theorem with LTP

Let events E1, ..., F, partition the sample space (2, and let F' be an-
other event. Then:

PIE: | F] = P[F | E1]P[E4]

o PIF | B PE;]

Definition: Independence (Events)

A and B are independent if any of the following equivalent statements
hold:

1. P[AN B] =P[A] P[B]

2.P[A| B] =P[A]

3.P[B| A] =P[B]

Theorem: Chain Rule

Let Ay, ..., A, be events with nonzero probabilities. Then:
P[A1N---NA,] =
P[Al]P[Az | A1]P[A3 | Aq mAQ]“-]P[An I A1 N ---ﬂAnfl]

Wesay nevents Ay, As, ..., A,, are (mutually) independent if, for any

subset I C [n] = {1,2,...,n}, we have
P Al =][Pl4
i€l i€l

This equation is actually representing 2™ equations since there are 2"
subsets of [n].

Definition: Conditional Independence

A and B are conditionally independent given an event C if any of the
following equivalent statements hold:
1.PIANB|C]=P[A|C|P[B|C]

2.P[A|BNC]=P[A|C]

3.P[B|ANC]=P[B| (]

Definition: Random Variable (RV)

A random variable X is a function of the outcome X : Q@ — R. The set
of possible values X can take on is its range/support, denoted Q2 x .

Definition: Probability Mass Function (PMF)

For a discrete RV X, assigns probabilities to values in its range. That is
px : Qx — [0, 1] where: px (k) = P[X = k].

Definition: Expectation

The expectation of a discrete RV X is: E[X] = Ekeﬂx k-px (k).

Theorem: Linearity of Expectation (LoE)

For any random variables X, Y (possibly dependent):
ElaX +bY +¢] =aE[X]+E[Y] + ¢

Theorem: Law of the Unconscious Statistician (LOTUS)

For a discrete RV X and function g, E [¢(X)] = Zbes’zx g(b) - px (b).

Definition: Variance

Var (X) =E [(X —E[X])?] =E [X?] - E[X]*.

Theorem: Property of Variance

Var (aX + b) = a?Var (X).

Definition: Independence (Random Variables)

Random variables X and Y are independent if for all z € Qx and all
Yy € Qy:
PX=2,Y=y|=PX =z]-P[Y =y].

Theorem: Variance Adds for Independent RVs

If X, Y are independent, then Var (X + Y') = Var (X)) + Var (Y).

Definition: Standard Deviation (SD)

ox = +/Var (X).




Reference: Continuous and Multivariate Probability

Definition: Cumulative Distribution Function (CDF)

Definition: Marginal PMFs

The cumulative distribution function (CDF) of ANY random variable is
Fx(t) =P[X < t].
If X is a continuous RV, Fx (t) =P [X < t] = [* _ fx(w) dw.

Theorem: Multiplicativity of expectation

For any independent random variables X, Y
E[XY]=E[X] -E[Y]

Definition: Expectation (Continuous)

The expectation of a continuous RV X is:
E[X] = ffooo z fx (z)dz.

Let X,Y be discrete random variables. The marginal PMF of X is:
pPx (U‘) = Zbeﬂy pX,Y(a’ b)-

Definition: Marginal PDFs

Let X,Y be continuous random variables. The marginal PDF of X is:
Fx(x) = [ fx.v(z,y)dy.

Definition: Independence of RVs (Continuous)

Continuous RVs X, Y are independent, written X | Y, ifforallz € Qx
and y € Qy,
Ixy(zy) = fx(@)fy(y)-

Theorem: Law of the Unconscious Statistician (LOTUS)

Definition: Conditional Expectation

For a continuous RV X: E [¢(X)] = [*°_ g(z) fx (z) dx.

Definition: Independent and Identically Distributed (i.i.d.)

We say X1,...,X,, are said to be independent and identically dis-
tributed (i.i.d.) if all the X;’s are independent of each other, and have
the same distribution (PMF for discrete RVs, or CDF for continuous RVs).

Definition: Joint PMFs

The joint PMF of discrete RVs X and Y is:
px,v(a,b) =P[X =a,Y =1
Their joint range is
Qx)y = {(C,d) :px,y(c7d) > U} CQx X Qy

Notethat 37, o\ Px.v(s:1) = 1.

Definition: Joint PDFs

The joint PDF of continuous RVs X and Y is:
fx,y(a,b) >0
Their joint range is
Qx,y ={(c.d): fx,y(c;d) >0} CQx X Qy

Note that [*7_ [*°_ fx vy (u,v)dudv = 1.

If X is discrete (and Y is either discrete or continuous), then we define
the conditional expectation of g(X') given (the event that) Y = y as:

E[g(X) |V =yl= > g@)P(X=3|Y =y)
TEQ x
If X is continuous (and Y is either discrete or continuous), then

Bl [V =yl = [~ g(z)h‘;ig;y)

Theorem: Law of Total Expectation (LTE)

Let X, Y be jointly distributed random variables.

If Y is discrete (and X is either discrete or continuous), then:

Elg(X)]= > E[g(X)|Y =y] py(»)
yeN

If Y is continuous (and X is eiﬁler discrete or continuous), then
oo
Blo(0]= [~ Blo00 1Y =u] fy )y
— o0

Reference: Tail Bounds

Theorem: Markov’s Inequality

Let X > 0 be a non-negative RV, and let £ > 0. Then:

pix > < 2

Theorem: Chebyshev’s Inequality

Theorem: Chernoff Bound

Let X = X714+ Xo+...4+X,,, where X1, X5, ..., X,, areindependent
random variables, each taking values in [0, 1]. Also, let . = E[X].
Forany1l > ¢ > 0:

P(X > (1+08)p) < exp (—5%/3)

P(X < (1-0)p) <exp(=67/2)

Let X be any RV with expected value ¢ = E[X] and finite variance
Var (X). Then, for any real number « > 0. Then,

Var (X)

PX —ul > o] < =

Theorem: The Union Bound

let Eq, Ea, ..., E,, be a collection of events. Then:

P [O Ei] < zn:]P’[Evt]

i=1




Reference: Zoo

Definition: Bernoulli/Indicator Random Variable

X ~ Bernoulli(p) (Ber(p) for short) iff X has PMF:
_l p k=1
px(F)=12p k=0

E[X] = pand Var (X) = p(1 — p).

Definition: Bi ial Random Variable

X ~ Binomial(n, p) (Bin(n, p) for short) iff X has PMF

px (k) = (:)ph (1- P)n'_k , ke Qx ={0,1,...,n}

E[X] = npand Var (X) = np(1 — p).

Definition: Uniform Random Variable (Discrete)

X ~ Uniform(a, b) (Unif(a, b) for short), for integers a < b, iff X has
PMF:

, k€ Qx ={a,a+1,...,b}

k)= ——
px(B) =3

E[X] = “tb and Var (X) = &=2brat2)

Definition: G ic Random Variable

X ~ Geometric(p) (Geo(p) for short) iff X has PMF:
px (k) =(1—p)* 'p, keQx =1{1,2,3,..}

E[X] = L and Var (X) = 1;—21)

Definition: Poi Random Variabl
X ~ Poisson(X) (Poi(\) for short) iff X has PMF:
px (k) =e 0, kEQx ={0,1,2,.. .}
E[X] = Xand Var(X) = X. If Xq,..., X, are independent Pois-

son RV’s, where X; ~ Poi();), then X = X; 4+ ... + X,, ~
Poi(A1 + ...+ An).

Definition: Uniform Random Variable (Continuous)

Definition: Normal (Gaussian, “bell curve”) Random Variable

X ~ Uniform(a, b) (Unif(a, b) for short) iff X has PDF:

4 if Qx =[a,b
= b—a tzellx [(L, ]
Fx (@) { 0 otherwise

2
E[X] = 2t and Var (X) = %.

Definition: Exponential Random Variable

X ~ Exponential(X) (Exp(\) for short) iff X has PDF:

_Jxe™™ ifz e Qx = [0,00)
Fx (@) = {O otherwise

E[X] = 5 and Var (X) = J5.

Fx (#) =1—e * forz > 0.

X ~ N(u, o?) iff X has PDF:
1 L
e 2 o2

fx (@)= ——c
E[X] = pand Var (X) = o2.

, € Qx =R

Theorem: Closure of the Normal Under Scale and Shift
If X ~ N(u,o?), thenaX + b~ N(ap + b, a?0?).

In particular, we can always scale/shift to get the standard
Normal: £=£ ~ A/(0,1).

o

Theorem: Closure of the Normal Under Addition

X ~N(ux,0%)and Y ~ N (py, 0% ) are independent, then

aX +bY + ¢~ N(apx +buy + ¢, azo%( +b20'%/)
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® Table: P(Z < z) when Z ~ N(0,1)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 | 0.5 0.50399 | 0.50798 | 0.51197 | 0.51595 | 0.51994 | 0.52392 | 0.5279 | 0.53188 | 0.53586

0.1 | 0.53983 | 0.5438 | 0.54776 | 0.55172 | 0.55567 | 0.55962 | 0.56356 | 0.56749 | 0.57142 | 0.57535

0.2 | 0.57926 | 0.58317 | 0.58706 | 0.59095 | 0.59483 | 0.59871 | 0.60257 | 0.60642 | 0.61026 | 0.61409

0.3 | 0.61791 | 0.62172 | 0.62552 | 0.6293 | 0.63307 | 0.63683 | 0.64058 | 0.64431 | 0.64803 | 0.65173

0.4 | 0.65542 | 0.6591 | 0.66276 | 0.6664 | 0.67003 | 0.67364 | 0.67724 | 0.68082 | 0.68439 | 0.68793

0.5 | 0.69146 | 0.69497 | 0.69847 | 0.70194 | 0.7054 | 0.70884 | 0.71226 | 0.71566 | 0.71904 | 0.7224

0.6 | 0.72575 | 0.72907 | 0.73237 | 0.73565 | 0.73891 | 0.74215 | 0.74537 | 0.74857 | 0.75175 | 0.7549

0.7 | 0.75804 | 0.76115 | 0.76424 | 0.7673 | 0.77035 | 0.77337 | 0.77637 | 0.77935 | 0.7823 | 0.78524

0.8 | 0.78814 | 0.79103 | 0.79389 | 0.79673 | 0.79955 | 0.80234 | 0.80511 | 0.80785 | 0.81057 | 0.81327

0.9 | 0.81594 | 0.81859 | 0.82121 | 0.82381 | 0.82639 | 0.82894 | 0.83147 | 0.83398 | 0.83646 | 0.83891

1.0 | 0.84134 | 0.84375 | 0.84614 | 0.84849 | 0.85083 | 0.85314 | 0.85543 | 0.85769 | 0.85993 | 0.86214

1.1 | 0.86433 | 0.8665 | 0.86864 | 0.87076 | 0.87286 | 0.87493 | 0.87698 | 0.879 0.881 0.88298

1.2 | 0.88493 | 0.88686 | 0.88877 | 0.89065 | 0.89251 | 0.89435 | 0.89617 | 0.89796 | 0.89973 | 0.90147

1.3 1 09032 | 0.9049 | 0.90658 | 0.90824 | 0.90988 | 0.91149 | 0.91309 | 0.91466 | 0.91621 | 0.91774

1.4 | 091924 | 0.92073 | 0.9222 | 0.92364 | 0.92507 | 0.92647 | 0.92785 | 0.92922 | 0.93056 | 0.93189

1.5 | 0.93319 | 0.93448 | 0.93574 | 0.93699 | 0.93822 | 0.93943 | 0.94062 | 0.94179 | 0.94295 | 0.94408

1.6 | 0.9452 | 0.9463 | 0.94738 | 0.94845 | 0.9495 | 0.95053 | 0.95154 | 0.95254 | 0.95352 | 0.95449

1.7 | 0.95543 | 0.95637 | 0.95728 | 0.95818 | 0.95907 | 0.95994 | 0.9608 | 0.96164 | 0.96246 | 0.96327

1.8 | 0.96407 | 0.96485 | 0.96562 | 0.96638 | 0.96712 | 0.96784 | 0.96856 | 0.96926 | 0.96995 | 0.97062

1.9 | 097128 | 0.97193 | 0.97257 | 0.9732 | 0.97381 | 0.97441 | 0.975 0.97558 | 0.97615 | 0.9767

2.0 | 097725 | 0.97778 | 0.97831 | 0.97882 | 0.97932 | 0.97982 | 0.9803 | 0.98077 | 0.98124 | 0.98169

2.1 | 0.98214 | 0.98257 | 0.983 0.98341 | 0.98382 | 0.98422 | 0.98461 | 0.985 0.98537 | 0.98574

2.2 | 0.9861 | 0.98645 | 0.98679 | 0.98713 | 0.98745 | 0.98778 | 0.98809 | 0.9884 | 0.9887 | 0.98899

2.3 | 0.98928 | 0.98956 | 0.98983 | 0.9901 | 0.99036 | 0.99061 | 0.99086 | 0.99111 | 0.99134 | 0.99158

2.4 | 09918 | 0.99202 | 0.99224 | 0.99245 | 0.99266 | 0.99286 | 0.99305 | 0.99324 | 0.99343 | 0.99361

2.5 | 0.99379 | 0.99396 | 0.99413 | 0.9943 | 0.99446 | 0.99461 | 0.99477 | 0.99492 | 0.99506 | 0.9952

2.6 | 0.99534 | 0.99547 | 0.9956 | 0.99573 | 0.99585 | 0.99598 | 0.99609 | 0.99621 | 0.99632 | 0.99643

2.7 | 0.99653 | 0.99664 | 0.99674 | 0.99683 | 0.99693 | 0.99702 | 0.99711 | 0.9972 | 0.99728 | 0.99736

2.8 | 0.99744 | 0.99752 | 0.9976 | 0.99767 | 0.99774 | 0.99781 | 0.99788 | 0.99795 | 0.99801 | 0.99807

2.9 | 0.99813 | 0.99819 | 0.99825 | 0.99831 | 0.99836 | 0.99841 | 0.99846 | 0.99851 | 0.99856 | 0.99861

3.0 | 0.99865 | 0.99869 | 0.99874 | 0.99878 | 0.99882 | 0.99886 | 0.99889 | 0.99893 | 0.99896 | 0.999




