The Language Modeling problem

- Create a probability distribution over all sequences of words
 - \circ finite vocabulary: Σ
 - o infinite set of sequences: Σ^*
 - o Any sentence/sequence of words $e=w_1w_2...w_n$ is an element of Σ^*

$$\sum_{e \in \Sigma^*} P_{LM}(e) = 1$$

$$P_{LM}(e) \ge 0 \ \forall e \in \Sigma^*$$

Our First Attempt

- Assume we have N training sentences
- Let $w_1w_2 \dots w_n$ be a sentence, and $count(w_1, w_2, \dots, w_n)$ be the number of times it appeared in the training data.
- Define a language model:

$$P(w_1, \dots, w_n) = \frac{\text{count}(w_1, \dots, w_n)}{N}$$

Unigram Language Model

"I have a dog whose name is Lucy. I have two cats, they like playing with Lucy."

•
$$\sum_{w \in \Sigma} \operatorname{count}(w) =$$

$$P(w_k|w_{1:k-1})\approx P(w_k)$$

•
$$P(Lucy) =$$

•
$$P(cats) =$$

$$\widehat{P}(w) = \frac{\operatorname{count}(w)}{\sum_{v \in \Sigma} \operatorname{count}(v)}$$

Bigram Language Model

"I have a dog whose name is Lucy. I have two cats, they like playing with Lucy."

•
$$P(\text{have} \mid I) =$$

$$P(w_k|w_{1:k-1}) \approx P(w_k|w_{k-1})$$

•
$$P(\text{two} | \text{have}) =$$

$$\widehat{P}(w_2 \mid w_1) = \frac{\operatorname{count}(w_1 w_2)}{\operatorname{count}(w_1)}$$

•
$$P(\text{eating} \mid \text{have}) =$$