Joint Distributions CSE 312 Autumn 25 Lecture 26-27

Announcements

This deck is for both today and Wednesday.

Wednesday's CC (CC27) is released already if you want to work ahead.

Midterm Second Chance is next Monday; we'll have a form you need to fill out (so we know how many copies to make).

Multiple Random Variables

This lecture and next lecture

Somewhat out-of-place content.

When we introduced multiple random variables, we've always had them be independent.

Because it's hard to deal with non-independent random variables.

Today and Wednesday are a crash-course in the toolkit for when you have multiple random variables and they aren't independent.

Going to focus on discrete RVs, we'll talk about continuous at the end.

Why

Independent random variables are easier to interact with.

But sometimes you want to interact with the dependence

ML/Data science takes advantage of dependence: Netflix knows you like movie A; people liking movie A is dependent on people liking movie B, and so recommends you movie B

Random variables might be indicators for specific individual people liking movies, or "if we select a person at random, will they like this movie"

Our examples are artificial/simple; we're just hoping to get the tools down.

Joint PMF, support

For two (discrete) random variables X, Y their joint pmf $p_{X,Y}(x,y) = \mathbb{P}(X = x \cap Y = y)$

When X, Y are independent then $p_{X,Y}(x,y) = p_X(x)p_Y(y)$.

Examples

Roll a blue die and a red die. Each die is 4-sided. Let *X* be the blue die's result and *Y* be the red die's result.

Each die (individually) is fair. But not all results are equally likely when looking at them both together.

$$p_{X,Y}(1,2) = 3/16.$$

$p_{X,Y}$	X=1	X=2	X=3	X=4
<i>Y</i> =1	1/16	1/16	1/16	1/16
Y=2	3/16	0	0	1/16
Y=3	0	2/16	0	2/16
Y=4	0	1/16	3/16	0

Marginals

What if I just want to talk about X?

Well, use the law of total probability:

$$\mathbb{P}(X = k) = \sum_{\text{partition } \{E_i\}} \mathbb{P}(X = k | E_i) \mathbb{P}(E_i)$$

and use E_i to be possible outcomes for Y For the dice example

$$\mathbb{P}(X=k) = \sum_{\ell=1}^{4} \mathbb{P}(X=k \mid Y=\ell) \mathbb{P}(Y=\ell)$$

$$= \sum_{\ell=1}^4 \mathbb{P}(X = k \cap Y = \ell)$$

$$p_X(k) = \sum_{\ell=1}^4 p_{X,Y}(k,\ell)$$

 $p_X(k)$ is called the "marginal" distribution for X (we "marginalized out" Y) it's the same pmf we've always used; the name comes from being in the margin of the paper when people printed these on paper.

Marginals

$$p_X(k) = \sum_{\ell=1}^4 p_{X,Y}(k,\ell)$$

So

$$p_X(2) = \frac{1}{16} + 0 + \frac{2}{16} + \frac{1}{16} = \frac{4}{16}$$

$p_{X,Y}$	X=1	X=2	X=3	X=4
<i>Y</i> =1	1/16	1/16	1/16	1/16
Y=2	3/16	0	0	1/16
<i>Y</i> =3	0	2/16	0	2/16
Y=4	0	1/16	3/16	0

Roll two fair dice independently. Let U be the minimum of the two rolls and V be the maximum

Are *U* and *V* independent?

Write the joint distribution in the table

What's $p_U(z)$? (the marginal for U)

$p_{U,V}$	<i>U</i> =1	<i>U</i> =2	<i>U</i> =3	<i>U</i> =4
V=1				
V=2				
V=3				
V=4				

Roll two fair dice independently. Let U be the minimum of the two rolls and V be the maximum

$$p_{U}(z) = \begin{cases} \frac{7}{16} & \text{if } z = 1\\ \frac{5}{16} & \text{if } z = 2\\ \frac{3}{16} & \text{if } z = 3\\ \frac{1}{16} & \text{if } z = 4\\ 0 & \text{otherwise} \end{cases}$$

$p_{U,V}$	<i>U</i> =1	<i>U</i> =2	<i>U</i> =3	<i>U</i> =4
V=1	1/16	0	0	0
V=2	2/16	1/16	0	0
V=3	2/16	2/16	1/16	0
V=4	2/16	2/16	2/16	1/16

Expectations and LTE

Joint Expectation

Expectations of joint functions

For a function g(X,Y), the expectation can be written in terms of the joint pmf.

$$\mathbb{E}[g(X,Y)] = \sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} g(x,y) \cdot p_{X,Y}(x,y)$$

This definition hopefully isn't surprising at this point (it's the value of g times the probability g takes on that value), but it's good to see.

Expectation of a function of two RVs

What's $\mathbb{E}[UV]$ for U, V from the last slide?

Expectation of a function of two RVs

What's $\mathbb{E}[UV]$ for U,V from the last slide?

$$\begin{split} & \sum_{u \in \Omega_U} \sum_{v \in \Omega_V} uv \cdot p_{U,V}(u,v) \\ &= 1 \cdot 1 \cdot \frac{1}{16} + 1 \cdot 2 \cdot \frac{2}{16} + 1 \cdot 3 \cdot \frac{2}{16} + 2 \cdot 2 \cdot \frac{1}{16} + 2 \cdot 3 \cdot \frac{2}{16} + 2 \cdot 4 \cdot \frac{2}{16} + \\ & 3 \cdot 3 \cdot \frac{1}{16} + 3 \cdot 4 \cdot \frac{2}{16} + 4 \cdot 4 \cdot \frac{1}{16} \\ &= \frac{92}{16} = \frac{23}{4} = 5.75. \end{split}$$

Conditional Expectation

Waaaaaay back when, we said conditioning on an event creates a new probability space, with all the laws holding.

So we can define things like "conditional expectations" which is the expectation of a random variable in that new probability space.

$$\mathbb{E}[X|E] = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x|E)$$

$$\mathbb{E}[X|Y=y] = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X=x|Y=y)$$

Conditional Expectations

All your favorite theorems are still true.

For example, linearity of expectation still holds

$$\mathbb{E}[(aX+bY+c)|E] = a\mathbb{E}[X|E] + b\mathbb{E}[Y|E] + c$$

Law of Total Expectation

Let
$$A_1,A_2,\ldots,A_k$$
 be a partition of the sample space, then
$$\mathbb{E}[X]=\sum_{i=1}^n\mathbb{E}[X|A_i]\mathbb{P}(A_i)$$

Let X, Y be discrete random variables, then

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X|Y = y] \mathbb{P}(Y = y)$$

Similar in form to law of total probability, and the proof goes that way as well.

LTE

You will flip 2 (independent, fair coins). Call the number of heads X. Then (independently of the coin flips) draw an exponential random variable Y from the distribution Exp(X+1).

What is $\mathbb{E}[Y]$?

LTE

You will flip 2 (independent, fair coins). Call the number of heads X. Then (independently of the coin flips) draw an exponential random variable Y from the distribution Exp(X+1).

What is $\mathbb{E}[Y]$?

$$\mathbb{E}[Y]$$

$$= \mathbb{E}[Y|X=0]\mathbb{P}(X=0) + \mathbb{E}[Y|X=1]\mathbb{P}(X=1) + \mathbb{E}[Y|X=2]\mathbb{P}(X=2)$$

$$= \mathbb{E}[Y|X=0] \cdot \frac{1}{4} + \mathbb{E}[Y|X=1] \cdot \frac{1}{2} + \mathbb{E}[Y|X=2] \cdot \frac{1}{4}$$

$$= \frac{1}{0+1} \cdot \frac{1}{4} + \frac{1}{1+1} \cdot \frac{1}{2} + \frac{1}{2+1} \cdot \frac{1}{4} = \frac{7}{12}.$$

We sometimes want to measure how "intertwined" X and Y are – how much knowing about one of them will affect the other.

If X turns out "big" how likely is it that Y will be "big" how much do they "vary together"

Covariance

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

If *X*, *Y* go in the same direction

If *X*, *Y* go in the opposite directions

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

That's consistent with our previous knowledge for independent variables. (for X, Y independent, $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$).

You and your friend are playing a game, you flip a coin: if heads you pay your friend a dollar, if tails they pay you a dollar. Let X be your profit and Y be your friend's profit.

What is Var(X + Y)?

Before you calculate, make a prediction. What should it be?

You and your friend are playing a game, you flip a coin: if heads you pay your friend a dollar, if tails they pay you a dollar. Let *X* be your profit and *Y* be your friend's profit.

What is Var(X + Y)?

$$Var(X) = Var(Y) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 1 - 0^2 = 1$$

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[XY] = \frac{1}{2} \cdot (-1 \cdot 1) + \frac{1}{2}(1 \cdot -1) = -1$$

$$Cov(X, Y) = -1 - 0 \cdot 0 = -1.$$

$$Var(X + Y) = 1 + 1 + 2 \cdot -1 = 0$$

Let X be a Bernoulli RV with probability p of success.

Let Y = X (Y is X, not an iid copy, literally the same experiment)

Let Z = -X

Let W be an independent Bernoulli, indentically distributed to X

Find

Cov(X, Y), Cov(X, Z), Cov(X, W)

Let X be a Bernoulli RV with probability p of success.

Let Y = X (Y is X, not an iid copy, literally the same experiment)

Let
$$Z = -X$$

Let W be an independent Bernoulli, indentically distributed to X

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

$$= (1 \cdot 1 \cdot p + 0 \cdot 0 \cdot \lceil 1 - p \rceil) - p \cdot p$$

$$= p - p^2 = p(1-p)$$

Hey, that's the variance of X. This is a pattern: Cov(X,X) = Var(X)

Let X be a Bernoulli RV with probability p of success.

Let Y = X (Y is X, not an iid copy, literally the same experiment)

Let
$$Z = -X$$

Let W be an independent Bernoulli, indentically distributed to X

$$Cov(X, Z) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

$$= (1 \cdot -1 \cdot p + 0 \cdot -0 \cdot [1-p]) - (p \cdot [-p])$$

$$=-p-[-p^2]=-p(1-p)$$

General pattern: Cov(X, -Y) = -Cov(X, Y)

Let X be a Bernoulli RV with probability p of success.

Let Y = X (Y is X, not an iid copy, literally the same experiment)

Let
$$Z = -X$$

Let W be an independent Bernoulli, indentically distributed to X

$$Cov(X, W) = \mathbb{E}[XW] - \mathbb{E}[X]\mathbb{E}[W]$$

$$= (1 \cdot 1 \cdot p^2 + 1 \cdot 0 \cdot p[1-p] + 0 \cdot 1 \cdot [1-p]p + 0 \cdot 0 \cdot [1-p]^2) - (p \cdot [p])$$

$$=(p^2)-p^2=0$$

General pattern: if X, Y independent Cov(X, Y) = 0

Conditional Distributions

Roll two fair dice independently. Let U be the minimum of the two rolls and V be the maximum

What is
$$\mathbb{P}(U=2|V=3)$$
?

$$\frac{\mathbb{P}(U=2\cap V=3)}{\mathbb{P}(V=3)} = \frac{2/16}{5/16} = \frac{2}{5}$$

$$p_{U|V}(2|3) = \frac{2}{5}$$

$p_{U,V}$	<i>U</i> =1	<i>U</i> =2	U=3	<i>U</i> =4
V=1	1/16	0	0	0
V=2	2/16	1/16	0	0
V=3	2/16	2/16	1/16	0
V=4	2/16	2/16	2/16	1/16

Find these values

$$p_{V|U}(2|1) =$$

$$p_{U|V}(1|2) =$$

$$p_{U|V}(4|1) =$$

$p_{U,V}$	<i>U</i> =1	<i>U</i> =2	U=3	<i>U</i> =4
V=1	1/16	0	0	0
V=2	2/16	1/16	0	0
V=3	2/16	2/16	1/16	0
V=4	2/16	2/16	2/16	1/16

Find these values

$$p_{V|U}(2|1) = \frac{p_{V,U}(2,1)}{p_U(1)} = \frac{2/16}{7/16} = \frac{2}{7}$$

$$p_{U|V}(1|2) = \frac{p_{U,V}(1,2)}{p_V(2)} = \frac{2/16}{3/16} = \frac{2}{3}$$

$$p_{U|V}(4|1) = \frac{p_{U,V}(4,1)}{p_{V}(1)} = \frac{0}{1/16} = 0$$

$p_{U,V}$	<i>U</i> =1	<i>U</i> =2	U=3	<i>U</i> =4
V=1	1/16	0	0	0
V=2	2/16	1/16	0	0
V=3	2/16	2/16	1/16	0
V=4	2/16	2/16	2/16	1/16

What about the continuous versions?

In the continuous case, everything is still a density function, not a mass function.

Joint density

Marginal density

Conditional density

Expectations, conditional expectations integrate $x \cdot (\text{cond})$ density(x)

You aren't getting a probability, you're getting a density; have to integrate to get a value.

Analogues for continuous

Everything we saw today has a continuous version.

There are "no surprises" – replace pmf with pdf and sums with integrals.

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X=x,Y=y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional PMF/PDF	$p_{X\mid Y}(x\mid y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X\mid Y}(x\mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation	$E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) dx$
Independence	$\forall x, y, p_{X,Y}(x,y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$

Conditioning on probability 0

We said for discrete spaces, when $\mathbb{P}(B) = 0$, $\mathbb{P}(A|B)$ is undefined How can you condition on something that doesn't happen? Also, how can you have $\mathbb{P}(B)$ in the denominator?

For continuous spaces, we have to use densities to avoid the problem, but we can avoid the problem with densities!

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

 $\mathbb{P}(Y = y)$ is 0, but the density might not be 0 there so this expression can be defined (and it works!).

If density is 0 for Y = y, the conditional density is undefined there.

A note on independence

The definition of independence says X, Y independent if and only if

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
 or $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ (as appropriate)

There's often a nice shortcut. If X, Y are independent then joint support of X, Y (denoted $\Omega_{X,Y}$) must be $\Omega_X \times \Omega_Y$.

Joint support is $\{(x, y): p_{X,Y}(x, y) > 0\}.$

Often easier to verify <u>dependence</u> when those are different (especially in the continuous case).

But note this is a single implication not an if-and-only-if.

Continuous definitions and theorems

Conditional expectation:

$$\mathbb{E}[X|Y=y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) \, dx$$

LTE:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X|Y = y] \cdot f_Y(y) \, dy$$

LTP:

$$\mathbb{P}(A) = \int_{-\infty}^{\infty} \mathbb{P}(A|X = x) \cdot f_X(x) \, dx$$

X is continuous; integrating over all values for X gives the full space