Different dice

Roll two fair dice independently. Let U be the minimum of the two rolls and V be the maximum

Are U and V independent?

Write the joint distribution in the table

What's $p_U(z)$? (the marginal for U

)	$p_{U,V}$	<i>U</i> =1	U=2	<i>U</i> =3	<i>U</i> =4
	V=1				
	V=2				
J)	V=3				
	V=4				

9

Expectation of a function of two RVs

What's $\mathbb{E}[UV]$ for U, V from the last slide?

Conditional Expectation

Waaaaaay back when, we said conditioning on an event creates a new probability space, with all the laws holding.

So we can define things like "conditional expectations" which is the expectation of a random variable in that new probability space.

$$\mathbb{E}[X|E] = \sum_{x \in \Omega} x \cdot \mathbb{P}(X = x|E)$$

$$\mathbb{E}[X|Y=y] = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X=x|Y=y)$$

38

Covariance

We sometimes want to measure how "intertwined" X and Y are – how much knowing about one of them will affect the other.

If X turns out "big" how likely is it that Y will be "big" how much do they "vary together"

Covariance

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

39