
Continuous Zoo CSE 312 Autumn 25

Lecture 16



Let’s start with the pmf

For discrete random variables, we defined the pmf: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

We can’t have a pmf quite like we did for discrete random variables. Let 
𝑋 be a random real number between 0 and 1.  

ℙ 𝑋 = .1 =
1

∞
??

Let’s try to maintain as many rules as we can…

Use 𝑓𝑋 instead of 𝑝𝑋 

to remember it’s 

different .

Discrete Continuous

𝑝𝑌 𝑘 ≥ 0 𝑓𝑋 𝑘 ≥ 0

෍

𝜔

𝑝𝑌(𝜔) = 1 න
−∞

∞

𝑓𝑋(𝑘)  d𝑘 = 1



The probability density function

For Continuous random variables, the analogous object is the

“probability density function” we write 𝑓𝑋 𝑘  instead of 𝑝𝑋(𝑘)

Idea: Make it “work right” for events since single outcomes don’t make 
sense.

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑐 න
𝑎

𝑏

𝑓𝑋 𝑧  d𝑧 = 𝑐 integrating is analogous to sum.

Let’s derive an example PDF together!

For a uniform random real number in [0,1]



CDFs



What’s a CDF?

𝐹𝑋 𝑘 = ℙ 𝑋 ≤ 𝑘 = ∞−׬

𝑘
𝑓𝑋 𝑧  d𝑧 

So how do I get from CDF to PDF? Taking the derivative!

d

d𝑘
𝐹𝑋(𝑘) =

d

𝑑𝑘
∞−׬

𝑘
𝑓𝑋 𝑧  d𝑧 = 𝑓𝑋(𝑘)

The Cumulative Distribution Function 𝐹𝑋 𝑘 = ℙ(𝑿 ≤ 𝒌) 

analogous to the CDF for discrete variables.



Comparing Discrete and Continuous

Discrete Random Variables Continuous Random Variables

Probability 𝟎 Equivalent to impossible All impossible events have probability 0, but not 

conversely.

Relative Chances PMF: 𝑝𝑋 𝑘 = ℙ(𝑋 = 𝑘) PDF 𝑓𝑋(𝑘) gives chances relative to 𝑓𝑋(𝑘′)

Events Sum over PMF to get probability Integrate PDF to get probability

Convert from CDF to 

PMF

Sum up PMF to get CDF.

Look for “breakpoints” in CDF to get PMF. 

Integrate PDF to get CDF.

Differentiate CDF to get PDF.

𝔼[𝑿]
෍

𝜔

𝑋(𝜔) ⋅ 𝑝𝑋(𝜔) න
−∞

∞

𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

𝔼[𝒈 𝑿 ]
෍

𝜔

𝑔 𝑋 𝜔 ⋅ 𝑝𝑋(𝜔) න
−∞

∞

𝑔(𝑧) ⋅ 𝑓𝑋 𝑧  d𝑧

𝐕𝐚𝐫(𝑿) 𝔼 𝑋2 − 𝔼 𝑋 2

𝔼 𝑋2 − 𝔼 𝑋 2 = න
−∞

∞

𝑧 − 𝔼 𝑋 2𝑓𝑋 𝑧  d𝑧



What about expectation?

For a random variable 𝑋, we define:

𝔼 𝑋 = ∞−׬

∞
𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

Just replace summing over the pmf with integrating the pdf.

It still represents the average value of 𝑋.



Expectation of a function

Again, analogous to the discrete case; just replace summation with 
integration and pmf with the pdf.

We’re going to treat this as a definition.

Technically, this is really a theorem; since 𝑓() is the pdf of 𝑋 and it only 
gives relative likelihoods for 𝑋, we need a proof to guarantee it “works” 
for 𝑔(𝑋). 

Sometimes called “Law of the Unconscious Statistician.”

For any function 𝒈 and any continuous random variable, 𝑿:

 𝔼 𝒈 𝑿 = ∞−׬

∞
𝒈 𝑿(𝒛) ⋅ 𝒇𝑿 𝒛  𝐝𝒛



Linearity of Expectation

Still true!

Won’t show you the proof – for just 𝔼[𝑎𝑋 + 𝑏], it’s
𝔼 𝑎𝑋 + 𝑏 = ∞−׬

∞
𝑎𝑋 𝑘 + 𝑏 𝑓𝑋(𝑘) d𝑘 

= ∞−׬

∞
𝑎𝑋 𝑘 𝑓𝑋 𝑘 𝑑𝑘 + ∞−׬

∞
𝑏𝑓𝑋 𝑘 𝑑𝑘

= 𝑎 ∞−׬

∞
𝑋 𝑘 𝑓𝑋 𝑘 𝑑𝑘 + 𝑏 ∞−׬

∞
𝑓𝑋 𝑘 𝑑𝑘

= 𝑎𝔼 𝑋 + 𝑏

𝔼 𝒂𝑿 + 𝒃𝒀 + 𝒄 = 𝒂𝔼 𝑿 + 𝒃𝔼[𝒀] + 𝒄
For all 𝑿, 𝒀; even if they’re continuous.



Variance

No surprises here

𝐕𝐚𝐫 𝑿 = 𝔼 𝑿𝟐 − 𝔼 𝑿 𝟐 = න
−∞

∞

𝒇𝑿(𝒌) 𝑿 𝒌 − 𝔼 𝑿 𝟐 𝐝𝒌



Let’s calculate an expectation

Let 𝑋 be a uniform random number between 𝑎 and 𝑏.

𝔼 𝑋 = ∞−׬

∞
𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧



Let’s calculate an expectation

Let 𝑋 be a uniform random number between 𝑎 and 𝑏.

𝔼 𝑋 = ∞−׬

∞
𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

= ∞−׬

𝑎
𝑧 ⋅ 0 d𝑧 + 𝑎׬

𝑏
𝑧 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏׬

∞
𝑧 ⋅ 0 d𝑧

= 0 + 𝑎׬

𝑏 𝑧

𝑏−𝑎
 d𝑧 + 0

= ฬ
𝑧2

2(𝑏−𝑎)

𝑏

𝑧=𝑎
=

𝑏2

2(𝑏−𝑎)
−

𝑎2

2 𝑏−𝑎
=

𝑏2−𝑎2

2 𝑏−𝑎
=

𝑏+𝑎 𝑏−𝑎

2 𝑏−𝑎
=

𝑎+𝑏

2



What about 𝔼 𝑔 𝑋

Let 𝑋~Unif(𝑎, 𝑏), what about 𝔼 𝑋2 ?

𝔼 𝑋2 = ∞−׬

∞
𝑧2𝑓𝑋 𝑧 d𝑧

= ∞−׬

𝑎
𝑧2 ⋅ 0 d𝑧 + 𝑎׬

𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏׬

∞
𝑧2 ⋅ 0 d𝑧

= 0 + 𝑎׬

𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 0

=
1

𝑏−𝑎
⋅ ฬ

𝑧3

3

𝑏

𝑧=𝑎
=

1

𝑏−𝑎

𝑏3

3
−

𝑎3

3
=

1

3 𝑏−𝑎
⋅ 𝑏 − 𝑎 𝑎2 + 𝑎𝑏 + 𝑏2

=
𝑎2+𝑎𝑏+𝑏2

3



Let’s assemble the variance

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

=
𝑎2+𝑎𝑏+𝑏2

3
−

𝑎+𝑏

2

2

=
4(𝑎2+𝑎𝑏+𝑏2)

12
−

3(𝑎2+2𝑎𝑏+𝑏2)

12

=
𝑎2−2𝑎𝑏+𝑏2

12

=
𝑎−𝑏 2

12



Continuous Uniform Distribution

𝑋~Unif(𝑎, 𝑏) (uniform real number between 𝑎 and 𝑏)

PDF: 𝑓𝑋 𝑘 = ൝
1

𝑏−𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

0 otherwise

CDF: 𝐹𝑋 𝑘 = ൞

0 if 𝑘 < 𝑎
𝑘−𝑎

𝑏−𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

1 if 𝑘 ≥ 𝑏

𝔼 𝑋 =
𝑎+𝑏

2

Var 𝑋 =
𝑏−𝑎 2

12



Comparing Discrete and Continuous

Discrete Random Variables Continuous Random Variables

Probability 𝟎 Equivalent to impossible All impossible events have probability 0, but not 

conversely.

Relative Chances PMF: 𝑝𝑋 𝑘 = ℙ(𝑋 = 𝑘) PDF 𝑓𝑋(𝑘) gives chances relative to 𝑓𝑋(𝑘′)

Events Sum over PMF to get probability Integrate PDF to get probability

Convert from CDF to 

PMF

Sum up PMF to get CDF.

Look for “breakpoints” in CDF to get PMF. 

Integrate PDF to get CDF.

Differentiate CDF to get PDF.

𝔼[𝑿]
෍

𝜔

𝑋(𝜔) ⋅ 𝑝𝑋(𝜔) න
−∞

∞

𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

𝔼[𝒈 𝑿 ]
෍

𝜔

𝑔 𝑋 𝜔 ⋅ 𝑝𝑋(𝜔) න
−∞

∞

𝑔(𝑧) ⋅ 𝑓𝑋 𝑧  d𝑧

𝐕𝐚𝐫(𝑿) 𝔼 𝑋2 − 𝔼 𝑋 2

𝔼 𝑋2 − 𝔼 𝑋 2 = න
−∞

∞

𝑧 − 𝔼 𝑋 2𝑓𝑋 𝑧  d𝑧



Continuous Zoo

𝒇𝑿 𝒌 =
𝟏

𝒃 − 𝒂

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒇𝑿 𝒌 = 𝝀𝒆−𝝀𝒌 for 𝒌 ≥ 𝟎

𝔼 𝑿 =
𝟏

𝝀

𝐕𝐚𝐫 𝑿 =
𝟏

𝝀𝟐

𝑿~𝐄𝐱𝐩(𝝀)

𝒇𝑿 𝒌 =
𝟏

𝝈 𝟐𝝅
𝐞𝐱𝐩 −

𝒙 − 𝝁 𝟐

𝟐𝝈𝟐

𝔼 𝑿 = 𝝁
𝐕𝐚𝐫 𝑿 = 𝝈𝟐

𝑿~𝒩(𝝁, 𝝈𝟐)

It’s a smaller zoo, but it’s just as much fun!



Exponential Random Variable

Like a geometric random variable, but continuous time. How long do we 
wait until an event happens? (instead of “how many flips until a heads”)

Where waiting doesn’t make the event happen any sooner. (memoryless)

Geometric: ℙ 𝑋 = 𝑘 + 1 𝑋 ≥ 1) = ℙ(𝑋 = 𝑘)

When the first flip is tails, the coin doesn’t remember it came up tails, 
you’ve made no progress. 

For an exponential random variable:

ℙ 𝑋 ≥ 𝑘 + 1 𝑋 ≥ 1) = ℙ(𝑌 ≥ 𝑘)



Are these memoryless?

You arrive to a bus stop at a (uniformly) random time, to a bus that 
arrives every 10 minutes. How long until the bus arrives? How long 
conditioned on you’ve already waited 8 minutes?

You put everyone in class into a random order. You’ll iterate through 
that list. What is the probability of being next? Probability of being next 
conditioned on not selected yet AND half the class has gone?

You flip a coin (independently) until you see a heads. How many flips do 
you need? How many additional flips after seeing 4 tails?



Are these memoryless?

You arrive to a bus stop at a (uniformly) random time, to a bus that 
arrives every 10 minutes. How long until the bus arrives? How long 
conditioned on you’ve already waited 8 minutes?

   Not memoryless! (bus must arrive in 10 minutes total, must be soon!)

You put everyone in class into a random order. You’ll iterate through 
that list. What is the probability of being next? Probability of being next 
conditioned on not selected yet AND half the class has gone?

Not memoryless (1/𝑛 of being first 1/(𝑛/2) after half class gone)

You flip a coin (independently) until you see a heads

Memoryless!



A continuous memoryless RV?

Poisson random variables come from a memoryless-type process.

Number of earthquakes (people in bakery, days with snow) would be 
memoryless under assumption that events are independent of each 
other! 

Same experiments, but now ask a different question:

Poisson: how many incidents occur in fixed interval?

Exponential: how long do I have to wait to see the next incident?



Exponential random variable

If you take a Poisson random variable and ask “what’s the time until the 
next event” you get an exponential distribution!

Let’s find the CDF for an exponential.

Let 𝑌~Exp(𝜆), be the time until the first event, when we see an average 
of 𝜆 events per time unit. 

What’s ℙ(𝑌 > 𝑡)? 

What Poisson are we waiting on, and what event for it tells you that 
𝑌 > 𝑡? 



Exponential random variable

If you take a Poisson random variable and ask “what’s the time until the 
next event” you get an exponential distribution!

Let’s find the CDF for an exponential.

Let 𝑌~Exp(𝜆), be the time until the first event, when we see an average 
of 𝜆 events per time unit. What’s ℙ(𝑌 > 𝑡)? 

What Poisson are we waiting on? For 𝑋~Poi(𝜆𝑡) ℙ 𝑌 > 𝑡 = ℙ(𝑋 = 0)

ℙ 𝑋 = 0 =
𝜆𝑡 0𝑒−𝜆𝑡

0!
= 𝑒−𝜆𝑡

𝐹𝑌 𝑡 = ℙ 𝑌 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡 (for 𝑡 ≥ 0, 𝐹𝑌 𝑥 = 0 for 𝑥 < 0)



Where did the 𝑡 come from?

Why did we switch from Exp(𝜆) to Poi(𝜆𝑡)?

Let’s make our units “incidents/second”, so 𝜆 = 3 says we average 3 
incidents per second. 

What if I want to know the probability of waiting at least 5 seconds? 
Well then on average how many incidents do we see in a 5 second 
period?

15 incidents! So the Poisson (how many incidents in fixed interval) now 
refers to a larger interval, so averages more events; specifically 𝜆𝑡.



Find the density

We know the CDF, 𝐹𝑌 𝑡 = ℙ 𝑌 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡

What’s the density?

𝑓𝑌 𝑡 =



Find the density

We know the CDF, 𝐹𝑌 𝑡 = ℙ 𝑌 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡

What’s the density?

𝑓𝑌 𝑡 =
𝑑

𝑑𝑡
1 − 𝑒−𝜆𝑡 = 0 −

𝑑

𝑑𝑡
𝑒−𝜆𝑡 = 𝜆𝑒−𝜆𝑡.

For t ≥ 0 it’s that expression

For 𝑡 < 0 it’s just 0.



Exponential PDF

Red: 𝜆 = 5
Blue: 𝜆 = 2
Purple: 𝜆 = 0.5



Memorylessness

ℙ 𝑋 ≥ 𝑘 + 1 𝑋 ≥ 1 =
ℙ(𝑋≥𝑘+1∩𝑋≥1)

ℙ(𝑋≥1)
=

ℙ(𝑋≥𝑘+1)

1−(1−𝑒−𝜆⋅1)

=
𝑒−𝜆(𝑘+1)

𝑒−𝜆 = 𝑒−𝜆𝑘

What about ℙ(𝑋 ≥ 𝑘) (without conditioning on the first step)?

1 − (1 − 𝑒−𝜆𝑘) = 𝑒−𝜆𝑘

It’s the same!!!

More generally, for an exponential rv 𝑋, ℙ 𝑋 ≥ 𝑠 + 𝑡 𝑋 ≥ 𝑠 = ℙ(𝑋 ≥ 𝑡)



Side note

I hid a trick in that algebra, 

ℙ 𝑋 ≥ 1 = 1 − ℙ 𝑋 < 1 = 1 − ℙ(𝑋 ≤ 1)

The first step is the complementary law.

The second step is using that 1׬

1
𝑓𝑋 𝑧 d𝑧 = 0

In general, for continuous random variables we can switch out ≤ and <
 without anything changing. 
We can’t make those switches for discrete random variables.



Expectation of an exponential

Let 𝑋~Exp(𝜆)

𝔼 𝑋 = ∞−׬

∞
𝑧 ⋅ 𝑓𝑋 𝑧 d𝑧

= 0׬

∞
𝑧 ⋅ 𝜆𝑒−𝜆𝑧 𝑑𝑧

Let 𝑢 = 𝑧;  𝑑𝑣 = 𝜆𝑒−𝜆𝑧𝑑𝑧 (𝑣 = −𝑒−𝜆𝑧)

Integrate by parts:−𝑧𝑒−𝜆𝑧 − ׬ −𝑒−𝜆𝑧 𝑑𝑧 = −𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧

Definite Integral:−𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧ȁz=0

∞ = ( lim
𝑧→∞

−𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧)  − (0 −

1

𝜆
) 

By L’Hopital’s Rule ( lim
𝑧→∞

−
𝑧

𝑒𝜆𝑧 −
1

𝜆𝑒𝜆𝑧)  − (0 −
1

𝜆
) = lim

𝑧→∞
−

1

𝜆𝑒𝜆𝑧 +
1

𝜆
=

1

𝜆

Don’t worry about the derivation 

(it’s here if you’re interested; 

you’re not responsible for the 

derivation. Just the value.



Variance of an exponential

If X~Exp 𝜆 then Var 𝑋 =
1

𝜆2

Similar calculus tricks will get you there. 



Exponential

𝑋~Exp(𝜆) 

Parameter 𝜆 ≥ 0 is the average number of events in a unit of time. 

𝑓𝑋 𝑘 = ቊ𝜆𝑒−𝜆𝑘 if 𝑘 ≥ 0
0 otherwise

𝐹𝑋 𝑘 = ቊ1 − 𝑒−𝜆𝑘 if 𝑘 ≥ 0
0 otherwise

𝔼 𝑋 =
1

𝜆

Var 𝑋 =
1

𝜆2
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