HW3 Solutions of front Don't discuss quiz broadly until

Variance CSE 312 Autumn 25 Lecture 12

- Variance

Where are we?

A random variable is a way to summarize what outcome you saw.

The Expectation of a random variable is its average value.

A way to summarize a random variable

Another one number summary of a random variable.

But wait, we already have expectation, what's this for?

Consider these two games

Would you be willing to play these games?

Game 1: I will flip a fair coin; if it's heads, I pay you \$1. If it's tails, you pay me \$1. Let X_1 be your profit if you play game 1

Game 2: I will flip a fair coin; if it's heads, I pay you \$10,000. If it's tails, you pay me \$10,000. Let X_2 be your profit if you play game 2.

Both games are "fair" ($\mathbb{E}[X_1] = \mathbb{E}[X_2] = 0$)

What's the difference

Expectation tells you what the average will be...

But it doesn't tell you how "extreme" your results could be.

Nor how likely those extreme results are.

Game 2 has many (well, only) very extreme results.

In expectation they "cancel out" but if you can only play once...

...it would be nice to measure that.

Designing a Measure – Try 1

Well let's measure how far all the events are away from the center, and how likely they are

$$\sum_{\omega} \mathbb{P}(\omega) \cdot (X(\omega) - \mathbb{E}[X])$$

What happens with Game 1?

$$\frac{1}{2} \cdot (1 - 0) + \frac{1}{2} \cdot (-1 - 0)$$

$$\frac{1}{2} - \frac{1}{2} = 0$$

What happens with Game 2?

$$\frac{1}{2} \cdot (1000000 - 0) + \frac{1}{2} \cdot (-1000000 - 0)$$

$$5000 - 5000 = 0$$

Designing a Measure – Try 2

How do we prevent cancelling? Squaring makes everything positive.

$$\sum_{\omega} \mathbb{P}(\omega) \cdot (X(\omega) - \mathbb{E}[X])^2$$

What happens with Game 1?

$$\frac{1}{2} \cdot \underbrace{(1 - 0)^2 + \frac{1}{2} \cdot (-1 - 0)^2}_{\frac{1}{2} + \frac{1}{2} = 1}$$

What happens with Game 2?

$$\frac{1}{2} \cdot (100000 - 0)^2 + \frac{1}{2} \cdot (-100000 - 0)^2$$
5,000,000,000 + 5,000,000,000 = 10^{10}

Why Squaring

Why not absolute value? Or Fourth power?

→Squaring is nicer algebraically.

Our goal with variance was to talk about the spread of results. Squaring makes extreme results even more extreme.

Fourth power over-emphasizes the extreme results (for our purposes).

Variance

The variance of a random variable *X* is

$$Var(X) = \sum_{\omega} \mathbb{P}(\omega) \cdot (X(\omega) - \mathbb{E}[X])^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

The first two forms are the definition. The last one is an algebra trick.

Variance of a die

Let X be the result of rolling a fair die.

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[(X - 3.5)^2]$$

$$= \frac{1}{6}(1 - 3.5)^2 + \frac{1}{6}(2 - 3.5)^2 + \frac{1}{6}(3 - 3.5)^2 + \frac{1}{6}(4 - 3.5)^2 + \frac{1}{6}(5 - 3.5)^2 + \frac{1}{6}(6 - 3.5)^2$$

$$= \frac{35}{12} \approx 2.92.$$

Or
$$\mathbb{E}[X^2] - (E[X])^2 = \sum_{k=1}^6 \frac{1}{6} \cdot k^2 - 3.5^2 = \frac{91}{6} - 3.5^2 \approx 2.92$$

Variance of n Coin Flips

Flip a coin n times, where it comes up heads with probability p each time (independently). Let X be the total number of heads.

We'll see next time $\mathbb{E}[X] = np$.

Also define:
$$X_i = \begin{cases} 1 & \text{if flip } i \text{ is heads} \\ 0 & \text{otherwise} \end{cases}$$

Variance of n Coin Flips

Flip a coin n times, where it comes up heads with probability p each time (independently). Let X be the total number of heads.

What about Var(X)

$$\mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{\omega} \mathbb{P}(\omega)(X(\omega) - np)^2$$
$$= \sum_{k=0}^{n} \binom{n}{k} \cdot p^k (1 - p)^{n-k} \cdot (k - np)^2$$

Algebra time?

If X and Y are independent then Var(X + Y) = Var(X) + Var(Y)

Are the X_i independent? Yes!

In this problem X_i is independent of X_j for $i \neq j$ where

$$X_i = \begin{cases} 1 & \text{if flip } i \text{ was heads} \\ 0 & \text{otherwise} \end{cases}$$

$$Var(X) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$

What's the $Var(X_i)$?

$$\mathbb{E}[(X_i - \mathbb{E}[X_i])^2]$$

$$= \mathbb{E}[(X_i - p)^2]$$

$$= p(1-p)^2 + (1-p)(0-p)^2$$

$$= p(1-p)[(1-p)+p] = p(1-p).$$

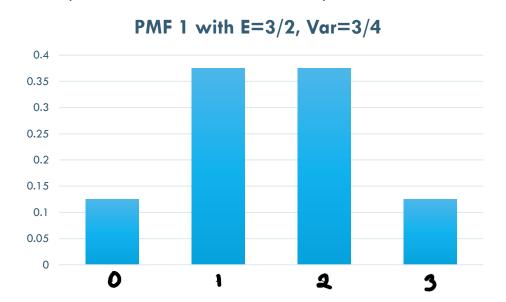
OR
$$Var(X_i) = \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2 = \mathbb{E}[X_i] - p^2 = p - p^2 = p(1-p)$$
.

Plugging In

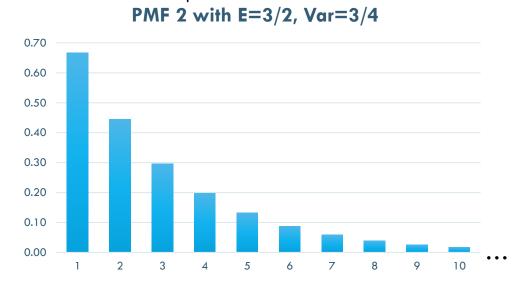
$$Var(X) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$

What's the $Var(X_i)$?

$$p(1-p)$$
.


$$Var(X) = \sum_{i=1}^{n} p(1-p) = np(1-p).$$

Expectation and Variance aren't everything


Alright, so expectation and variance is everything right?

No!

Flip a fair coin 3 times indep. Count heads.

Flip a biased coin (prob heads=2/3) until heads. Count flips.

A PMF or CDF *does* fully describe a random variable.

Proof of Calculation Trick

```
\mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2 - 2X\mathbb{E}[X] + (\mathbb{E}[X])^2] \text{ expanding the square}
= \mathbb{E}[X^2] - \mathbb{E}[2X\mathbb{E}[X]] + \mathbb{E}[(\mathbb{E}[X])^2] \text{ linearity of expectation.}
= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[(\mathbb{E}[X])^2] \text{ linearity of expectation.}
= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + (\mathbb{E}[X])^2 \text{ expectation of a constant is the constant}
= \mathbb{E}[X^2] - 2(\mathbb{E}[X])^2 + (\mathbb{E}[X])^2
= \mathbb{E}[X^2] - (\mathbb{E}[X])^2
```

So
$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
.

Shifting a random variable

For any random variable X, and any constants a, b: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$

For any random variable X, and any constants a, b: $Var(aX + b) = a^2Var(X)$