Try It Yourself

There are 20 balls, numbered 1,2,...,20 in an urn.

You'll draw out a size-three subset. (i.e. without replacement)

 $\Omega = \{\text{size three subsets of } \{1, ..., 20\} \}, \mathbb{P}() \text{ is uniform measure.}$

Let *X* be the largest value among the three balls.

If outcome is $\{4,2,10\}$ then X = 10.

Write down the PMF of X; Write down the CDF of X.

10

Two descriptions

PROBABILITY MASS FUNCTION

Defined for all \mathbb{R} inputs.

Usually has "0 otherwise" as an extra case.

$$\sum_{x} p_X(x) = 1$$

$$0 \leq p_X(x) \leq 1$$

$$\sum_{z:z\leq x} p_X(z) = F_X(x)$$

CUMULATIVE DISTRIBUTION FUNCTION

Defined for all \mathbb{R} inputs.

Often has "0 otherwise" and 1 otherwise" extra cases

Non-decreasing function

$$0 \le F_X(x) \le 1$$

$$\lim_{x \to -\infty} F_X(x) = 0$$

$$\lim_{x \to \infty} F_X(x) = 1$$

Try it yourself

Let X be the result shown on a fair die. What is $\mathbb{E}[X]$?

Let Y be the sum of two (independent) fair die rolls. What is $\mathbb{E}[Y]$?

21

Random Variable

 $X:\Omega\to\mathbb{R}$ is a random variable $X(\omega)$ is the summary of the outcome ω

Expectation

The "expectation" (or "expected value") of a random variable *X* is:

$$\mathbb{E}[X] = \sum_{k} k \cdot \mathbb{P}(X = k)$$

25