QWL \ N Mmy)a%

120 -960 (= dowy)

A Ve T Wedtnw o/\'QerK

More Practice
Independence, Conditioning, Bayes

CSE 312 Autumn 25
Lecture 8




Today

Practice (independence and conditioning)
One more independence definition
Bayes’ Rule in the real world!



[~ More Bayes Practice



A contrived example

You have

NN

C

three red marbles and one blue marble in your left pocket,

and one red marble and two blue marbles in your right pocke

You will f
your left

Tight poc

N S wvft\o\;ft@

Ip a fair coin; If it's heads, you'll draw a marble (uniformly) from
nocket, if it's tails, you'll draw a marble (uniformly) from your

ket.

Let B be you draw a blue marble. Let T be the coin is tails.
What s P(B|T) what is P(T|B) ?




P(RNH) =3/8 P(RNT)=1/6

P(BNH)=1/8

Updated Sequential Processes

You have three red marbles and one blue marble in your left pocket,
and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

For sequential processes with probability,
at each step multiply by

=3 P(next step |all N prior N steps)

P(BNT)=1/3




Updated Sequential Processes

You have three red marbles and one blue marble in your left pocket,
and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

For sequential processes with probability,
at each step multiply by
P(next step |all N prior N steps)

11

P(RNH) =3/8 P(RNT) =1/6

P(B|T) = 2/3;, P(B) = % +§ ==
\ﬁ_\ <

< PGB NH) =1/8 ) P(BNT) =1/3
;—
N -

———




Flipping the conditioning

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pock

if it's heads, you'll draw a marble (uniformly) from your left pocket,

P <+ if it’s tails, you'll draw a marble (uniformly) from your right pocket.

Pause, what's your intuition?
s this probability

A. less than %,

B. equal to ¥

@reater than %
N




Flipping the conditioning

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

Pause, what's your intuition?
s this probability

A. less than %,

B. equal to ¥

C. greater than %

The right (tails) pocket is far more likely to produce a blue marble if picked
than the left (heads) pocket is. Seems like IP(T|B) should be greater than '%.



Flipping the conditioning

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,
if it's tails, you'll draw a marble (uniformly) from your right pocket.

Bayes’ Rule says:

P(B|T)P(T)
P(T|B) = =22
21
—_ 32 —_
o 11/24 8/11

=19



’ The Technical Stuff



Proof of Bayes' Rule

P(ANB)
P(B)

Now, imagining we get A N B by conditioning on A, we should get a
numerator of P(B|A) - P(A)

__ P(B|A)-P(4)
- P(B)

P(A|B) =

by definition of conditional probability

As required.



A Technical Note

After you condition on an event, what remains is a probability space.

—_— —_—

e

With B playing the role of the sample space,

P(w|B) playing the role of the probability measure.
—

All the axioms are satisfied (it's a good exercise to check)

That means any theorem we write down has a version where you
condition everything on B.



An Example

Bayes Theorem still works in a probability space where we've already
conditioned on S.

_ P(B|[A N S])P(A|S)
P(AI[B N S]) = ===
~__ -

Complementary law still works in a probability space where we've B
already conditioned on S _ l - ?(}m)
P(A|C) = 1 - P(4|C) PU\B 7

\

—



A Quick Technical Remark

| often see students write things like

P([AIB]IC) P( A \ CRY@

This Is not a thing.

You probably \@ (A|[B n@

A|B isn't an event — it's describing an event and telling you to restrict
the sample space. So you can't ask for the probability of that
conditioned on something else.




I~ More Independence



Independence of events

Recall the definition of independence of events:

Independence

Two events A, B are independent if
P(A N B) = P(A) - P(B)




Independence for 3 or more events

For three or more events, we need two kinds of independence

Pairwise Independence

Events A,,A4,, ..., A,, are pairwise independent if
P(A; N A;) = P(4;) - P(4;) forall i,j

Mutual Independence
Events A,,4,, ..., A,, are mutually independent if
P(4;, N A4;, NN Ay) =P(4;) - P(A;,) - P(Ay)
tor every subset {iq, i,, ..., 1} of {1,2,...,1;].




Pairwise Independence vs. Mutual
Independence

Roll two fair dice (one red one blue) independently
R ="red die is 3"

E ="blue die is 5"

[E ="sum iIs 7"

How should we describe these events?



Pairwise Independence

R, B, S are pairwise independent

P(R N B) ?= P(R)P(B)

3—16 = % : % Yes! (These are also independent by the problem statement)
P(RNS)?=PR)P(S)

—72=2.2 Yes!

36 6 6

P(BNS)?=P(B)P(S) Since all three pairs are

11 1vac iIndependent, we say the random

36 6 6 '

variables are pairwise independent.



Mutual Independence

R, B, S are not mutually independent.

P(R N B NS)=0;if the red die is 3, and blue die is 5 then the sum is 8
(so It can't be 7)

P(R)P(B)P(S) = (1)3 -1 290

6/ 216

—



Checking Mutual Independence

t's not enough to check just P(A N B N C) either.
Roll a fair 8-sided die.
et A be {1,2,3,4}

B be {2,4,6,8}

C be {2,3,5,7}

P(ANBNC) =P{2)}) = %
P(APB)P(C) === .= ==



Checking Mutual Independence

t's not enough to check just P(A N B N C) either.
Roll a fair 8-sided die.

et A be {1,2,3,4}
B be {2,4,6,8)
C be {2,3,5,7}

P(ANBNC)=P{2) =§

P(A)P(B)P(C) = % . % . % _ %

But B and C aren’t independent. Because there’s a subset that's not
independent, 4, B, C are not mutually independent.



Checking Mutual Independence

To check mutual independence of events:
Check every subset.

To check pairwise independence of events:
Check every subset of size two.




Why Two Versions?

Pairwise independence is often all you need and is easier to design an
experiment/code to achieve it.
“Pairwise independent hash functions” are a theoretical example.

— T—m——

e

Mutual Independence would let us vastly simplify the chain rule
computation.

P(A; Nn--NAy) =P(A4;) - P(Az|A41) - P(A3]A; NAy) - P(AplA1 NN Ap_y)
Simplifies to P(41) - P(4,) - P(43) ---P(4,)



I~ Bayes in the real world



—P(D IT) . D-dseg
Application 1: Medical Tests - poshhe tst

LaHeIping Doctors and Patients Make Sense of Health Statistics
A researcher posed the following scenario to a group of 160 doctors:

Assume you conduct a disease screening using a standard test in a certain region.
You know the following information about the people in this region: ‘?(D%

ope . . 0 __/
The probability that ? person has the d?s.ease IS 1/ow | D 'T\‘D\
If a person has the dlseas% the probability that she tests positive is 90% (sensitivity)
If a person does not have the disease, the probability that she nevertheless tests

| —

posit_iye Is 9% (false-positive rate) c——~—— P (*g‘\ ’T“)B —
A person tests positive. She wants to know from you whether that means that she has
the diseaseforsure;or what the chances are. What is the best answer? E—

A. The probability that she has the disease is <C, Out of 10 people with a positive test,@
about 81%. have the disease.

B. Out of 10 people with a positive test, about 9 D, The probability that she has the disease is about
have the disease. 1%



https://journals.sagepub.com/doi/pdf/10.1111/j.1539-6053.2008.00033.x

Let’'s do the calculation!

Let D be “the patient has the dlsease T be the test was pOSItIV

O) RO \\55
P(DIT) = P(T|D) - P(D)/P(T)
e aetrlan T m

b—q—
Calttation tMayes’ Ru u should see one of thetérms on the
bottom exactly-match your numerato routeusing the LTP to

calculate the probablllty on the bottom)

‘.._-‘__




Pause for vocabulary

Physicians have words for just about everything
_et D be has the disease; T be test is positive
P(D) is “prevalence”

P(T|D) is "sensitivity”
A ‘sensitive’ test is one which picks up on the disease when it's there
(high sensitivity -> few false negatives)

P(T|D) is “specificity”
A ‘specific’ test is one that is positive specifically because of the disease, and for no
other reason (high specificity -> few false positives)




How did the doctors do

C (about 1in 10) was the correct answer.

Of the doctors surveyed, less than 4 got it right (so worse than random
guessing).

After the researcher taught them his calculation trick, more than 80%
got it right.



One Weird Trick!

Conditional Probabilities

1
woman

1% 99%
breast cancer  no breast cancer

N S
90% 10% 9% 91%
positive negative positive negative

p(breast cancer| test positive)

_ 0%
01%.9+99%.09

Natural Frequencies

— e
1,000
women

A

10 990
breast cancer  no breast cancer

9 1 89 901
positive negative positive negative

plbreast cancer|test positive)

Calculation Trick: imagine you
have a large population (not one
person) and ask how many there
are of false/true
positives/negatives.



What about the real world?

When you're older and have to do more routine medical tests, don't get
concerned (yet) when they ask to run another test.*

It's usually fine.*

*This is not medical advice, Robbie is not a physician.



I~ Infinite Sample Spaces



Implicitly defining Q

We've often skipped an explicit definition of Q.

Often |Q] is infinite, so we really couldn’t write it out (even in principle).

How would that happen?

Flip a fair coin (independently each time) until you see your first tails.
what is the probability that you see at least 3 heads?



An infinite process.

Q is infinite.
P(H) =% P(T) =% A squent@al process is also going
to be infinite...

But the tree is “self-similar”

P(T) =1/2 .
o To know what the next step looks like,
(HTIH) =5 you only need to look back a finite
number of steps.
P(HT) = 1/4 From every node, the children look

identical (H with probability 7%,
continue pattern; T to a leaf with
PCHHT) = 1/8 probability 12)

1
P(HHH|HH) =




Finding IP(at least 3 heads)

Method 1: infinite sum.

Q includes H'T for every i. Every such outcome has probability 1/2¢+1
What outcomes are in our event?

1

0o i+1 _ 24 _ 1
2i=3 1/27" = 1-1/2 8

Infinite geometric series, where common ratio is between —1 and 1 has
first term
closed form

1-ratio



Finding IP(at least 3 heads)

Method 2:

Calculate the complement

P(at most 2 heads) = % + % +%

[P(at least 3 heads)=1 — G + % + %) — %



[~ Optional: Careful Surveys

Another Real-World Bayes example



Application 2: An Imbalanced Survey

In 2014, a paper was published

“Do non-citizens vote in U.S. elections?”

This is a real paper (peer-reviewed). It claims that

1. In a survey, about 4% (of a few hundred) of non-U.S.-citizens surveyed said
they voted in the 2008 federal election (which isn't allowed).

2. Those non-citizen voters voted heavily (estimate 80+%) for democrats.

3. "It is likely though by no means certain that John McCain would have won
North Carolina were it not for the votes for Obama cast by non-citizens”


https://www.sciencedirect.com/science/article/pii/S0261379414000973?casa_token=x0yueI_NF5sAAAAA:xlXSf6_K6kO8e9as2QGtFpmZL2YH52OkqIzFFi3Vdf9OyvoP2fKRjtBcIu3fgeqlerQMapA-jCk
https://www.sciencedirect.com/science/article/pii/S0261379414000973?casa_token=x0yueI_NF5sAAAAA:xlXSf6_K6kO8e9as2QGtFpmZL2YH52OkqIzFFi3Vdf9OyvoP2fKRjtBcIu3fgeqlerQMapA-jCk
https://www.sciencedirect.com/science/article/pii/S0261379414000973?casa_token=x0yueI_NF5sAAAAA:xlXSf6_K6kO8e9as2QGtFpmZL2YH52OkqIzFFi3Vdf9OyvoP2fKRjtBcIu3fgeqlerQMapA-jCk

Application 2: What is this survey?

The “Cooperative Congressional Election Study” was run in 2008 and
2010.

It interviews about 20,000 people about how/whether they voted in
federal elections.

Two strange observations:

1. The noncitizens are a very small portion of those surveyed. Feels a
little strange.

2. Those people...maybe accidentally admitted to a crime?



Application 2: Another Red Flag

A response paper (by different authors)

"The perils of cherry picking low frequency events in large sample
surveys”

Table 1
Response to citizenship question across two-waves of CCES panel.

Response in 2010 Response in 2012 Number of respondents Percentage

Citizen Citizen 18,737 99.25
Citizen Non-Citizen 20 0.11
Non-Citizen Citizen 36 0.19

Non-Citizen Non-Citizen 85 0.45



http://web.stanford.edu/group/bps/cgi-bin/wordpress/wp-content/uploads/2015/04/The-Perils-of-cherry-picking-low-frequency-events-in-surveys.pdf
http://web.stanford.edu/group/bps/cgi-bin/wordpress/wp-content/uploads/2015/04/The-Perils-of-cherry-picking-low-frequency-events-in-surveys.pdf

An Explanation

Suppose 0.1% of people check the wrong check-box on any individual
qguestion (independently)

Suppose you really interviewed 20,000 people, of whom 300 are really
non-citizens (none of whom voted), and the rest are citizens, of whom
70% voted. What is the probability someone appears to have voted

P(say NC|say V) P(sayv) .001-.7 N

P(sav NC 300 19700, ~
(say NC) 999 (35000 7001 Goo00)

P(say V|say NC) =
4.38%




Conclusion

The authors of the original paper did know about response error...

..and they have an appendix that argues the population of “non-citizen”
voters isn't distributed exactly like you'd expect.

But with it being such a small number of people, this isn't surprising.

And even they admit response bias played more of a role than they
initially thought.

Though they still think they found some evidence of non-citizens voting
(but not enough to flip North Carolina anymore).



Takeaways

When talking about rare events (rare diseases, rare prize-winning-

golden-tickets), think carefully about whether a test is really as
informative as you think.

Do the explicit calculation

Intuition is easier if thinking about a large population of repeated tests,
not just one.

Be careful of small subparts of large datasets

People from a large majority group (accidentally) clicking the wrong
demographic information can “drown out” signal of a very small group.



[~ Optional: Bayes Factor

A way to estimate Bayes calculations quickly



Bayes Factor

Another Intuition Trick: from 3Blue1Brown

When you test positive, you (approximately) multiply the prior by the
“Bayes Factor” (aka likelihood ratio)

sensitivity __1-FNR

false positive rate FPR


https://www.youtube.com/watch?v=lG4VkPoG3ko

Bayes Factor

Does it work?

Let's try it...
Find

: Sensitivity
prior -

FPR



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars
until you find one, but that's expensive...you've got a better idea!

You have a test — a very precise scale you've bought.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you
only 1% of the time.

If you pick up a bar and it alerts, what is the probability you have a
golden ticket?



Wonka Bars

Bayes Factor
99.9

1
Prior: .1%

Product: 9.99, so about 10%
About what Bayes Rule gets!



Application 1. Medical Tests

Helping Doctors and Patients Make Sense of Health Statistics
A researcher posed the following scenario to a group of 160 doctors:

Assume you conduct a disease screening using a standard test in a certain region.
You know the following information about the people in this region:

The probability that a person has the disease is 1% (prevalence)
If a person has the disease, the probability that she tests positive is 90% (sensitivity)

If a person does not have the disease, the probability that she nevertheless tests
positive is 9% (false-positive rate)

A person tests positive. She wants to know from you whether that means that she has
the disease for sure, or what the chances are. What is the best answer?

A. The probability that she has the disease is  C. Out of 10 people with a positive test, about 1

about 81%. | N have the disease.
B. Out of 10 people with a positive test, about 9 D, The probability that she has the disease is about
have the disease. 1%


https://www.stat.berkeley.edu/~aldous/157/Papers/health_stats.pdf

Bayes Factor

What about with the doctors?

90%

19 -
L 9%

= 10%

Again about right!



Caution

Multiplying by the Bayes Factor is an approximation

It gives you the exact numerator for Bayes, but the denominator is
“the number of false positives if the prevalence (/prior) were 0"

When the prior is close to 0, this is a fine approximation!
But plug in a prior of 15% on the last slide, and we get 150% chance.



What about negative tests?

For negative tests, the Bayes Factor is

FNR
specificity

Specificity is (1 — false negative rate)
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