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CSE 312 Autumn 25
Lecture 6

Conditioning and
Bayes' Rule




Last Time

Conditional Probability
For an event B, with P(B) > 0,

the “Probability of A conditioned on B” is

P(A N B)

Roll a fair 6-sided die. Let A be “the die roll is a 4", B be “the die roll is
an even number’

P(A|B) =
P(B|A) =



Conditioning...

Let B be “the sum is 4"
Let C be “"the blue dieis 3”
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Conditioning...
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Conditioning...
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Let B be “the sum is 4"
Let C be “the blue die is

P(A[C)
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Conditioning Practice
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Take a few minutes to work on

this with the people around you!

(also on your handout)
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Conditioning Practice
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Direction Matters

Are P(A|B) and P(B|A) the same?




Direction Matters

No! P(A|B) and IP(B|A) are different quantities.

P("traffic on the highway” | “it's snowing"”) is close to 1

P(“it's snowing” | “traffic on the highway") is much smaller; there many
other times when there is traffic on the highway

It's a lot like implications — order can matter a lot!

(but there are some A, B where the conditioning doesn’t make a
difference)



‘ Bayes’ Rule



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

-___;

You want to get a golden ticket. You could buy a 1000-or-so of the bars
until you find one, but that's expensive...you've got a better idea!

You have a test — a very precise scale you've bought.

[If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the
time.

f the bar you weigh does not have a golden ticket, the scale will (falsely) alert you
only 1% of thwe.

~——

If you pick up a bar and it alerts, what is the probability you have a
golden ticket?



Fill out the pol! everywhere so

Wi | |y WO n ka Robbie kncws how long to explain

Go to pollev.com /robbie

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you
only 1% of the time.

You pick up a bar and it alerts, what is the probability you have a golden
ticket?

: : : A. 0.1%

Which of these is closest to the right answer? 3. 10%
C. 50%
D. 90%
E. 99%

F. 99.9%



Conditioning

Let S be the event that the Scale alerts you
—— \_/

Letébe the event your bar has a Golden ticket.
What conditional probabilities are each of these?

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will
(falsely) alert you only 1% of the time.

You pick up a bar and it alerts, what is the probability you have a
golden ticket?



Conditioning

Let S be the event that the Scale alerts you
Let G be the event your bar has a Golden ticket.
What conditional probabilities are each of these?

Willy Wonka has placed golden tickets on 0.1% of his Wonki Bars. | P(G) —

If_the bar you weigh does have a golden ticket, the scale wil

P(S|G) | E—
you 99.9% of the time. 1( |G)
If the bar you weigh does not have a golden ticket, the scale will | pes16) |l
(falsely) alert you only 1% of the time.  —— 2( 1G)

You pick up a bar and it alerts, what is the probability you have a

- — P(G|S)
golden ticket? L 6



Reversing the Conditioning

All of our information conditions on whether G happens or not — does
your bar have a golden ticket or not?

But we're interested in the “reverse” conditioning. We know the scale
alerted us — we know the test is positive — but do we have a golden
ticket?




Bayes’ Rule

Bayes’ Rule

P(B|A)P(A)

P(A|B) =

P(B)



Bayes’ Rule

Bayes’ Rule

P(B|A)P(A)

P(A|B) =

P(B)
What do we know about Wonka Bars?

_ BES6) P((6)
P@ED =5

—




Bayes’ Rule

Bayes’ Rule

P(B|A)P(A)

P(A|B) =

P(B)

What do we know about Wonka Bars?

1999 -.001
P(G|S) =

JS)



Filling In

What's P(S)?

We'll use a trick called ”t@la\/WQ@ELgobabiﬂty”:
P(S) = P(SI6) - P(G) + P(SIG) - Pga)

= 0.999-.001 + .01 - 999

—_—

=.010989




Law of Total Probability

Let Ay, A4, ..., Ay be a partition of Q.

&

A partition of a set S is a family of subsets Sy, S5, ..., S such that:
SinS; =0 foralli,jand
S,US,U-US, =S§.

—

.e. every element of Q is in exactly one of the A;.



Law of Total Probability

Law of Total Probability

Let A4, A5, ..., A, be a partition of ().
For any event E,

P(E) = ) P(E|A)P(A)

all i

Q, split into partition A4, A,, A3
with event E inside.




Why?

Al AZ

//_g_/

The Proof is actually pretty informative on what's going on.

Dall i P(€|Ai)P(Ai)

P(ENA;) .
— Zalli P(A;)
= 2ani P(ENA;) <<“
= IP(E)

The A; partition £, so E N A; partition E. Then we just add up those
probabilities.

Ability to add follows from the “countable additivity” axiom.

\--..__/

- P(A;) (definition of conditional probability)




Bayes Rule

What do we know about Wonka Bars?

p(G1s) = 229001
- 010989

Solving P(G|S) = —, i.e. about 0.0909.

"'---._________./
“

Only about a 10% chance that the bar has the golden ticket!



Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.
W .t m . n .t If the bar you weigh does have a golden ticket, the scale will alert
dil a INUte... you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will
(falsely) alert you only 1% of the time.

That doesn't fit with many of our guesses. What's going on?

Instead of saying “we tested one and got a positive” imagine we tested
1000. ABOUT how many bars of each type are there?

(about)_vaith a golden ticket 999 without. Let's say those are exactly right.
Let’s just say that one golden is truly found.

(about) 1% of the 999 without would be a positive. Let's say it's exa%
— -




Visually

Gold bar is the one (true) golden ticket bar.
Purple bars don't have a ticket and tested
negative.

Red bars don't have a ticket, but tested
positive.

The test is, in a sense, doing really well.
It's almost always right. T oe———

The problem is it's also the case that the
correct answer is almost always “no.”



Updating Your Intuition

¢ Take 1: The test is actually good and has VASTLY increased our belief
that there IS a golden ticket when you get a positive result.

It we told you “your job is to find a Wonka Bar with a golden ticket”
without the test, you have 1/1000 chance, with the test, you have (about)
a 1/11 chance. That's (almost) 100 times better!

This is actually a huge improvement!



Updating Your Intuition

@ Take 2: Humans are really bad at intuitively understanding very large
or very small numbers.

When | hear "99% chance”, "99.9% chance”, "99.99% chance” they all go
into my brain as "well that's basically guaranteed” And then | forget how
many 9's there actually were.

But the number of 9s matters because they end up “cancelling” with the

“‘number of 9's” in the population that's truly negative. We'll talk about
this a little more on Friday in the applications.



Updating Your Intuition

¢ Take 3: View tests as updating your beliefs, not as revealing the truth.

'——___——’-‘-_—_; .

Bayes' Rule says that IP(B|A) has a factor of P(B) In it. You have to
translate "The test says there’s a golden ticket” to “the test says you

should increase your estimate of the chances that you have a golden
ticket.”

A test takes you from your % beliefs of the probability to your

“posterior” beliefs.
%



[~ More Bayes Practice



A contrived example

You have three red marbles and one blue marble in your left pocket,
and one red marble and two blue marbles in your right pocket.

You will flip a fair coin; if it's heads, you'll draw a marble (uniformly) from
your left pocket, if it's tails, you'll draw a marble (uniformly) from your
right pocket.

Let B be you draw a blue marble. Let T be the coin is tails.
What is P(B|T) what is P(T|B) ?



P(RNH) =3/8 P(RNT)=1/6

P(BNH)=1/8

Updated Sequential Processes

You have three red marbles and one blue marble in your left pocket,
and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

For sequential processes with probability,
at each step multiply by

=3 P(next step |all N prior N steps)

P(BNT)=1/3




P(RNH) =3/8 P(RNT)=1/6

P(BNH)=1/8

Updated Sequential Processes

You have three red marbles and one blue marble in your left pocket,
and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

For sequential processes with probability,
, at each step multiply by
=3 P(next step |all N prior N steps)

P(B|T) = 2/3; P(B) = % +§ _u

P(BNT)=1/3 24




Flipping the conditioning

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

Pause, what's your intuition?
s this probability

A. less than %,

B. equal to %

C. greater than %



Flipping the conditioning

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

Pause, what's your intuition?
s this probability

A. less than %,

B. equal to ¥

C. greater than %

The right (tails) pocket is far more likely to produce a blue marble if picked
than the left (heads) pocket is. Seems like IP(T|B) should be greater than '%.



Flipping the conditioning

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,
if it's tails, you'll draw a marble (uniformly) from your right pocket.

Bayes’ Rule says:

P(B|T)P(T)
P(T|B) = =22
21
=32z —g/11



’ The Technical Stuff



Proof of Bayes' Rule

P(ANB)
P(B)

Now, imagining we get A N B by conditioning on A, we should get a
numerator of P(B|A) - P(A)

__ P(B|A)-P(4)
- P(B)

P(A|B) =

by definition of conditional probability

As required.



A Technical Note

After you condition on an event, what remains is a probability space.

With B playing the role of the sample space,
P(w|B) playing the role of the probability measure.

All the axioms are satisfied (it's a good exercise to check)

That means any theorem we write down has a version where you
condition everything on B.



An Example

Bayes Theorem still works in a probability space where we've already
conditioned on S.

P(B|[4 N S])-P(AIS)

P(A[[B N S]) = P(B|S)




A Quick Technical Remark

| often see students write things like
P([AIB]IC)
This Is not a thing.

You probably want P(A|[B N C])

A|B isn't an event — it's describing an event and telling you to restrict
the sample space. So you can't ask for the probability of that
conditioned on something else.
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