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CSE 312 Autumn 25
Lecture 5

Probability Practice
Conditioning Definitions




Last Time

~ Sample Space

A sample space Q is the set of all possible
outcomes of an experiment.

Event

An event E C () is a subset of possible
outcomes (i.e. a subset of Q)

Probability

A probability is a number between 0 and 1 describing
how likely a particular outcome is.



Probability Space ?, (W%

Probability Space

A (discrete) probability space is a pair (Q, P) where:
Q is the sample space
P: Q — [0,1] is the probability measure.
[P satisfies:
« P(x) =0 forall x

. erﬂp(x) =1
e fEEFSCQand ENF =@thenP(EUF)=P(E) + P(F)




Probability Space

Flip a fair coin and roll a fair (6-sided) die.

N —— _—
v Q= {H,T}x (123456}
\[P(w) ——for every w € ()
——_

— - - &)

s this a valid probability space?

[P takes in elements of Q and outputs numbers between 0 and 1
Za)E.Q ]P(CU) — 1



Mutually Exclusive Events

Two events E, F are mutually exclusive if they cannot happen
simultaneously.

In notation, E N F = @ (i.e. they're disjoint subsets of the sample space).
— -
For example, it Q = {H, T} x {1,2,3,4,5,6}

E, ="the coin came up heads”

E, ="the coin came up tails" E; and E, are mutually exclusive.
E; and E5 are not mutually exclusive.

E; ="the die showed an even number”

\ __—




Axioms and Consequences

We wrote down 3 requirements (axioms) on probability measures
P(x) = 0 for all x (non-negativity)
Yea P(x) =1 (normalization)

It E and F are mutually exclusive then P(E U F) = P(E) + P(F)
(countable additivity)

These lead quick totfw/ur_&wc;ﬂa%ries
P(E) =1 —P(E) (Qomplementation

It E C F,then P(E) < P(F) (mongtgpicity)

W
P(EUF)=P(E)+P(F)—P(EnNF) (inclusion-exclusion)
—_ T N Y T




‘ Examples



More Examples!

Suppose you roll two dice. Each die is fair and they don't affect each
other. What is the probability of both dice being even?

nat is your sample space;

nat is your probability measure P?

nat Is your event?

= ===

nat is the probability?



More Examples!

Suppose you roll two dice. Each die is fair and they don't affect each
other. What is the probability of both dice being even?

What is your sample space? {1,2,3,4,5,6} X {1,2,3,4,5 6}v
—G?p
What is your probability measure P P? P(w) = 1/36 forall w € Q
I —
What is your event? {2,4,6} X {2 4 6}
What is the probability? 32/62 —

’T(



More Examples!

) Suppose you roll two dice. Each die is fair and they don't affect each other. What is
the probability of both dice being even?

Wlhat if we can't tell the dice apart and always put the dice in increasing order by
value.

What is your sample space?

. {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,3),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6,6)}
What is your probability measure P? ]
P((x,y)) =2/36ifx#y, P(x,x)=1/36

] IR
- Whattsyourevent? {(2,2), (4.4), (6,6), (24), (26), (4,6))
What is the probability? 3 -3—16 +3.2=2
=

36 36




Takeaways

There is often more than one sample space possible! But one is
probably easier than the others.

Finding a sample space that will make the uniform measure correct will
usually make finding the probabilities easier to calculate.



Another Example - 52\@\‘33% W ks

{Suppose you shuftle a deck of'cards so any arrangement is equally

likely. What is the probability that the top two cards have the same
value?

L@Sample Space
Probability Measure
Event
Probability



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally
likely. What is the probability that the top two cards have the same

value? /9 K@/J/é

Sample Space: {(x,y): x and y are different cards }

Probability Measure: uniform measure P(w) = =

52-51
Event: all pairs with equal values

—
Probability: BP@2). gD@ 3

52-51
-



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally
likely. What is the probability that the top two cards have the same

value? <), T 3&?7 L

Sample Space: Set of all orderings of all 52 ce@

Probability Measure: uniform measure P(w) = — )
521,
Event: all lists that start with two cards of the samevalue
|
Probability: 8.2 50!

52!



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally
likely. What is the probability that the top two cards have the same
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure: uniform measure P(w) = %

Fvent: all lists that start with two cards of the same value

. 13-P(4,2)-50 %49 %48 *---.x2 x1
Probabllity:
52 % 51 * 50 *49 x48 x ...x2x*1




Takeaway

There's often information you “don’t need” in your sample space.
It won't give you the wrong answer.

But it sometimes makes for extra work/a harder counting problem,

Good indication: you cancelled A LOT of stuff that was common in the
numerator and denominator.



Uniform Probability Space

The most common probability measure is the uniform probability measure. In
the uniform measure, for every event E

P(E) = %

Let your sample space be all possible outcomes of a sequence of 100 coin
tosses. Assign the uniform measure to this sample space. What is the
probability of the event “there are exactly 50 heads?

A (190) /210
B.1/101
C.1/2

D. 1/250

E. There is not enough information in this problem.



Few notes about events and samples spaces

If you're dealing with a situation where you may be able to use a
uniform probability space, make sure to set up the sample space in a
way that every outcome is equally likely.

Try not overcomplicate the sample space — only include the information
that you need in it.

When you define an event, make sure it is a subset of the sample space!




Some Quick Observations

-or discrete probability spaces (the kind we've seen so far)
P(E) =0ifand only if ?
P(E) =1ifand only if ?




Some Quick Observations

-or discrete probability spaces (the kind we've seen so far)
P(E) = 0 if and only if an event can't happen.

P(E) = 1 if and only if an event is guaranteed (every outcome outside
E has probability 0).






Probable Fruit

The fruit store sells apples, bananas, and oranges.

Robbie will buy a bag of 10 fruits (order doesn’t matter) to bring to
ecture, uniformly at random among all possible bags that contain at
east one of each fruit type.

You and your friend are first in line to take fruit, and will take an apple
each if it's available---what is the probability you both get an apple?



Probable Fruit (Sample Space)

Defining the sample space (other than in English sentences) would be
annoying--we'll skip it.

But we need its size...two options



Complementary counting and Inclusion-
Exclusion

et A, B, O be bags with no apples, bananas, oranges. S be set of all
oags Wewant S\ (AU B UDO0).

(10+3 1

10 fruit, 3 types

(10+2 1) = |B| = |0] 10 fruit, but only 2 types now.

(Thls formula actually simplifies to 11; think about why)
AnB|= (""" =14An0] =|Bn 0|10 fruit, but only 1type now.

(This formula simplifies to 1; think about why)
|JAN B N O|=0no way to have no types of fruit!

Combining: (*°°71) =3(*% 4 ) +3- (') =66 —33+3 =36



Clever Solution

Put the one fruit of each type in the bag first. We now need 7 more
fruits (vvith no restrictions).

(7+3 1



What about the event?

We need at least 2 apples, at least 1 banana, at least 1 orange.
Could do cases again, let's use just the clever approach:

6 more fruits to add: (°1°7) = () = 28

Since we're in the uniform probability space, just divide

28 7
9

36



~ | Conditional Probabilities
— /




Conditioning

You roll a fair red die and a fair die (without letting the dice affect
each other).

But they fell off the table and you can't see the results.

| can see the results — | tell you the sum of the two dice is 4.

What's the probability that the red die shows a 5, conditioned on
knowing the sum is 4? T —




Conditioning

You roll a fair red die and a fair die (without letting the dice affect
each other).

But they fell off the table and you can't see the results.

| can see the results — | tell you the sum of the two dice is 4.

What's the probability that the red die shows a 5, conditioned on
knowing the sum is 4?

It's O.
Without the conditioning it was 1/6.



Conditioning

When | told you “the sum of the dice is 4" we restricted the sample
space.

The only remaining outcomes are {(1,3),(2,2),(3,1)} out of
{1,2,3,4,5,6} x {1,2,3,4,5,6}. o

Outside the (restricted) sample space, the probability is going to
become 0. What about the probabilities inside?



Conditional Probability

Conditional Probability
For an event B, with P(B) > 0,

the “Probability of A conditioned on B” is

P(A N B)

P(A|B) = P(B)

Just like with the formal definition of probability, this is pretty abstract.
It does accurately reflect what happens in the real world.

If P(B) = 0, we can't condition on it (it can't happen! There's no point in

defining probabilities where we know B has not happened) — IP(A|B) is
undefined when P(B) = 0.



Conditioning...

Let B be “the sum is 4"
Let C be “"the blue dieis 3”

D1=
D1=5
[

(2
(3,
(4.1

(5,
(6,

\_/\/\_/vv

(1,2)

(2,2)
(3.2)
(4.2)
(5,2)
(6,2)

(1,3)

(2,3)
(3,3)
(4,3)
(5,3)
(6,3)

(1,4)
(2,4)
(3:4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Conditioning...

et 4 b e red s 5 -

D1=1

Let B be “the sum is 4"
Let C be “"the blue dieis 3”

P(A[B)

D1=
D1=5

1

(1,1)
(2

(4,
(5,
(6,

(12

) (2,3)

1)
)
)

D1=3 (3,2)

(4.2)
(5,2)
(6,2)

(3,3)
(4,3)
(5,3)
(6,3)

(2,4)
(3:4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Conditioning...

et 4 b e red s 5 -

D1=1

Let B be “the sum is 4"
Let C be “"the blue dieis 3”

P(A[B)

P(ANB)=P@) =0 [P
P(B) = 3/36

P(4lB) 0 D1=5
~ 3/36 1

(1,1)
(2

(4,
(5,
(6,

(12

) (2,3)

1)
)
)

D1=3 (3,2)
(4,2)

(5,2)
(6,2)

(3,3)
(4,3)
(5,3)
(6,3)

(2,4)
(3:4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Conditioning...

Let B be “the sum is 4"
Let C be “"the blue dieis 3”

P(A|C)
D1=

D1=5
[

(2
(3,
(4.1

(5,
(6,

\_/\/\_/vv

(1,2)

(2,2)
(3.2)
(4.2)
(5,2)
(6,2)

(1,3)

(2,3)
(3,3)
(4,3)
(5,3)
(6,3)

(1,4)
(2,4)
(3:4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Conditioning...

et 4 b e red s 5 - b=

Let B be “the sum is 4"
Let C be "the blue dieis 3" ) (1 2) 14 (1 5 (1 6
27 22 24) (25) (256)
P(A|C)
37 (32 3,4) (3,5 (3,6)
P(ANC)=1/36 DIE 4,1 (4,2) (4,4) (4,5 (4,6)
P(C) = 6/36
1/36 N 1) (52) (54) (55) (5,6)
P(A|C) = 5736
B 61 (62 (6,4) (6,5 (6,6)




Red die 6

conditioned on

Red die 6
conditioned on

Sum 7 conditioned
on red die 6

D1=4

Take a few minutes to work on
this with the people around you!

D1=06

(also on your handout)

(2
(3,7
(4,
(5
(6,

Conditioning Practice

I 2 1 P 2

)
)
)
)
)

(1,2)
(2,2)
(3.2)
(4.2)
(5,2)
(6,2)

(1,3)

(2,3)
(3,3)
(4,3)
(5,3)
(6,3)

(1,4)
(2,4)
(3:4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Conditioning Practice

A ~ Red die 6
B~ Sumis 7/

P(A|B)
= P(AN B)/P(B)

=1/6

I 2 1 P 2

D1=1

D1=
D1=5
D1=06

(2

(3,
(4.1

(5,
(6,

\_/\/\_/vv

(1,2)

(2,2)
(3.2)
(4.2)
(5,2)
(6,2)

(1,3)

(2,3)
(3,3)
(4,3)
(5,3)
(6,3)

(1,4)
(2,4)
(3:4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Conditioning Practice

A ~ Red die 6
C~Sumis9

P(A|C)
= P(A N C)/P(C)

=1/4

I 2 1 P 2

D1=1

D1=
D1=5
D1=06

(2

(3,
(4.1

(5,
(6,

\_/\/\_/vv

(1,2)

(2,2)
(3.2)
(4.2)
(5,2)
(6,2)

(1,3)

(2,3)
(3,3)
(4,3)
(5,3)
(6,3)

(1,4)
(2,4)
(3:4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Conditioning Practice

B~ Sumis 7
A ~ Red dieis 6

P(B|A)
= P(B N A)/P(A)

=1/6

I 2 1 P 2

D1=1

D1=
D1=5
D1=06

(2

(3,
(4.1

(5,
(6,

\_/\/\_/vv

(1,2)

(2,2)
(3.2)
(4.2)
(5,2)
(6,2)

(1,3)

(2,3)
(3,3)
(4,3)
(5,3)
(6,3)

(1,4)
(2,4)
(3:4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Conditioning Practice

I 2 1 P 2

Red die 6
conditioned on
sum / 1/6

Red die 6
conditioned on
sum 9 1/4

Sum 7 conditioned
onreddieb 1/6

D1=T1

e
(3,
DIEY/S (4,1
DIERE (5,
DIEIE (6,

\_/\/\_/vv

(1,2)

(2,2)
(3.2)
(4.2)
(5,2)
(6,2)

(1,3)

(2,3)
(3,3)
(4,3)
(5,3)
(6,3)

(1,4)
(2,4)
(3,4)
(4.,4)
(5,:4)
(6,4)

(1,5)

(2,5)
(3,5)
(4,5)
(5,5)
(6,5)

(1.6)

(2,6)
(3,6)
(4,6)
(5,6)
(6,6)



Direction Matters

Are P(A|B) and P(B|A) the same?



Direction Matters

No! P(A|B) and IP(B|A) are different quantities.

P(“traffic on the highway” | “it's snowing”) is close to 1

P(“it's snowing” | “traffic on the highway") is much smaller; there many
other times when there is traffic on the highway

It's a lot like implications — order can matter a lot!

(but there are some A, B where the conditioning doesn’t make a
difference)
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