Definition. A **sample space** Ω is the set of all possible outcomes of an experiment.

Examples:
- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:
- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number on a die: $E = \{2, 4, 6\}$
Definition. A (discrete) probability space is a pair \((\Omega, \mathbb{P})\) where:

- \(\Omega\) is a set called the **sample space**.
- \(\mathbb{P}\) is the **probability measure**, a function \(\mathbb{P}: \Omega \to [0,1]\) such that:
 - \(\mathbb{P}(E) \geq 0\) for all \(E \subseteq \Omega\)
 - \(\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1\)

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.

Either finite or infinite countable (e.g., integers)

Set of possible elementary outcomes

Specifies Likelihood (or probability) of each event in the sample space
Review Axioms of Probability

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Non-negativity): $P(E) \geq 0$
Axiom 2 (Normalization): $P(\Omega) = 1$
Axiom 3 (Countable Additivity): If E and F are mutually exclusive events, then $P(E \cup F) = P(E) + P(F)$

Corollary 1 (Complementation): $P(E^c) = 1 - P(E)$
Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$
Corollary 3 (Inclusion-Exclusion): $P(E \cup F) = P(E) + P(F) - P(E \cap F)$
Review Equally Likely Outcomes

If \((\Omega, P)\) is a uniform probability space, then for any event \(E \subseteq \Omega\), then

\[
P(E) = \frac{|E|}{|\Omega|}
\]
Agenda

• Conditional Probability
• Bayes Theorem
• Law of Total Probability
• Bayes Theorem + Law of Total Probability
• More Examples
What’s the probability that a uniformly random person likes ice cream given they like donuts?
Conditional Probability

Definition. The *conditional probability* of event A given an event B happened (assuming $P(B) \neq 0$) is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

An equivalent and useful formula is

$$P(A \cap B) = P(A|B)P(B)$$
Reversing Conditional Probability

Question: Does $P(A|B) = P(B|A)$?

No! The following analogy is purely for intuition and makes no sense in terms of probability

- Let A be the event you are wet
- Let B be the event you are swimming

\[
P(A|B) = 1 \\
P(B|A) \neq 1
\]
Example with Conditional Probability

Toss a red die and a blue die (both 6 sided and all outcomes equally likely). What is $P(B)$? What is $P(B|A)$?
Conditional Probability in a uniform probability space

Definition. The *conditional probability* of event A **given** an event B happened (assuming $P(B) \neq 0$) is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If the probability space is uniform, then

$$P(A \mid B) = \frac{|A \cap B|}{|B|}$$
Agenda

• Conditional Probability
• Bayes Theorem
• Law of Total Probability
• Bayes Theorem + Law of Total Probability
• More Examples
Our First Machine Learning Task: Spam Filtering

Subject: “FREE $$$ CLICK HERE”

Suppose you know that 80% of emails you receive are spam.

So a priori, our belief is that any email has an 80% chance of being spam.

How do you update that belief when you see that the subject line contains the phrase “FREE $$$”?
Bayes Theorem

A formula to let us “reverse” the conditional.

Theorem. (Bayes Rule) For events A and B, where $P(A), P(B) > 0$,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$P(A)$ is called the **prior** (our belief without knowing anything)

$P(A|B)$ is called the **posterior** (our belief after learning B)
Bayes Theorem follows from the definition of conditional probability

Definition. The **conditional probability** of event \(A \) **given** an event \(B \) happened (assuming \(P(B) \neq 0 \)) is

\[
P(A|B) = \frac{P(A \cap B)}{P(B)}
\]
Bayes Theorem Proof

By definition of conditional probability

\[P(A \cap B) = P(A|B)P(B) \]

Swapping \(A, B \) gives

\[P(B \cap A) = P(B|A)P(A) \]

But \(P(A \cap B) = P(B \cap A) \), so

\[P(A|B)P(B) = P(B|A)P(A) \]

Dividing both sides by \(P(B) \) gives

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]
Our First Machine Learning Task: Spam Filtering

Subject: “FREE $$$ CLICK HERE”

What is the probability this email is spam, given the subject contains “FREE”? Some useful stats:

- 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject.
- 70% of spam emails contain the word “FREE” in the subject.
- 80% of emails you receive are spam.
Brain Break
Agenda

• Conditional Probability
• Bayes Theorem
• **Law of Total Probability**
• Bayes Theorem + Law of Total Probability
• More Examples
Partitions (Idea)

These events **partition** the sample space
1. They “cover” the whole space
2. They don’t overlap
Definition. Non-empty events E_1, E_2, \ldots, E_n partition the sample space Ω if

(Exhaustive)

$$E_1 \cup E_2 \cup \ldots \cup E_n = \bigcup_{i=1}^{n} E_i = \Omega$$

(Pairwise Mutually Exclusive)

$$\forall i \forall i \neq j E_i \cap E_j = \emptyset$$
Law of Total Probability (Idea)

If we know E_1, E_2, \ldots, E_n partition Ω, how does that help us compute $P(F)$?
Law of Total Probability (LTP)

Definition. If events \(E_1, E_2, ..., E_n\) partition the sample space \(\Omega\), then for any event \(F\)

\[
P(F) = P(F \cap E_1) + ... + P(F \cap E_n) = \sum_{i=1}^{n} P(F \cap E_i)
\]

Using the definition of conditional probability \(P(F \cap E) = P(F|E)P(E)\)

We can get the alternate form of this that show

\[
P(F) = \sum_{i=1}^{n} P(F|E_i)P(E_i)
\]
An Example

Alice has two pockets:
• **Left pocket:** Two red balls, two green balls
• **Right pocket:** One red ball, two green balls.

Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

What is $\mathbb{P}(R)$?
Sequential Process – Non-Uniform Case

- Right pocket: Two red, two green
- Right pocket: One red, two green.
- Alice picks a random ball from a random pocket
Sequential Process – Non-Uniform Case

\[\mathbb{P}(R) = \mathbb{P}(R \cap \text{Left}) + \mathbb{P}(R \cap \text{Right}) \] (Law of total probability)

\[= \mathbb{P}(\text{Left}) \times \mathbb{P}(R | \text{Left}) + \mathbb{P}(\text{Right}) \times \mathbb{P}(R | \text{Right}) \]

\[= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12} \]

- **Left pocket:** Two red, two green
- **Right pocket:** One red, two green.

\[\frac{1}{3} = \mathbb{P}(R | R) \text{ and } \frac{2}{3} = \mathbb{P}(G | R) \]
Agenda

• Conditional Probability
• Bayes Theorem
• Law of Total Probability
• Bayes Theorem + Law of Total Probability
• More Examples
Our First Machine Learning Task: Spam Filtering

Subject: “FREE $$$ CLICK HERE”

What is the probability this email is spam, given the subject contains “FREE”? Some useful stats:

- 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject.
- 70% of spam emails contain the word “FREE” in the subject.
- 80% of emails you receive are spam.
Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let E_1, E_2, \ldots, E_n be a partition of the sample space, and F an event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(F)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^C)P(E^C)}$$
Agenda

• Conditional Probability
• Bayes Theorem
• Law of Total Probability
• Bayes Theorem + Law of Total Probability
• More Examples
Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns “positive”, what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.
Example – Zika Testing

Suppose we know the following Zika stats
 – A test is 98% effective at detecting Zika (“true positive”)
 – However, the test yields a “false positive” 1% of the time
 – 0.5% of the US population has Zika.

What is the probability a random person has Zika (event Z) given that they test positive (event T).
Example – Zika Testing

Suppose we know the following Zika stats
- 0.5% of the US population has Zika.
- A test is 98% effective at detecting Zika (“true positive”) 100%
- However, the test may yield a “false positive” 1% of the time 10/995 = approximately 1%

What is the probability a random person has Zika (event Z) if they test positive (event T)?

Suppose we had 1000 people:
- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

\[
\frac{5}{5 + 10} = \frac{1}{3} \approx 0.33
\]

Have zika blue, don’t pink
Philosophy – Updating Beliefs

While it’s not 98% that you have the disease, your beliefs changed drastically.

Z = you have Zika
T = you test positive for Zika

Prior: \(P(Z) \)

I have a 0.5% chance of having Zika

Receive positive test result

Posterior: \(P(Z|T) \)

I now have a 33% chance of having Zika after the test.
Example – Zika Testing

Suppose we know the following Zika stats:
- A test is 98% effective at detecting Zika (“true positive”)
- However, the test may yield a “false positive” 1% of the time
- 0.5% of the US population has Zika.

What is the probability you test negative (event \bar{T}) if you have Zika (event Z)?
Conditional Probability Defines a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}(B^c | A) = 1 - \mathbb{P}(B | A)$
Gambler’s fallacy

Assume we toss 51 fair coins. Each outcome equally likely. Assume we have seen 50 coins, and they are all “tails”. What are the odds the 51st coin is “heads”?

\[\mathcal{A} = \text{first 50 coins are “tails”} \]
\[\mathcal{B} = \text{first 50 coins are “tails”, 51st coin is ”heads”} \]

\[P(\mathcal{B}|\mathcal{A}) = \]
Gambler’s fallacy

Assume we toss 51 fair coins.
Assume we have seen 50 coins, and they are all “tails”.
What are the odds the 51st coin is “heads”?

\[\mathcal{A} = \text{first 50 coins are “tails”} \]
\[\mathcal{B} = \text{first 50 coins are “tails”, 51st coin is ”heads”} \]

\[
\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} = \frac{1/2^{51}}{2/2^{51}} = \frac{1}{2}
\]

51st coin is independent of outcomes of first 50 tosses!

Gambler’s fallacy = Feels like it’s time for “heads”!?
Summary

• Conditional Probability

\[P(B|A) = \frac{P(A \cap B)}{P(A)} \]

• Bayes Theorem

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

• Law of Total probability

\[P(F) = \sum_{i=1}^{n} P(F|E_i)P(E_i) \quad E_i \text{ partition } \Omega \]