CSE 312
Foundations of Computing II

Lecture 13: Wrap up Poisson r.v.s + Bloom Filters

Anna’s office hours on Saturday (tmw) from 2-3pm
Agenda

• More on Poisson random variables
• An Application: Bloom Filters!
Preview: Poisson

Model: X is # events that occur in an hour
- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3t$
- Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

$X = \# \text{ of cars passing through a light in 1 hour}$
Example – Model the process of cars passing through a light in 1 hour

\[X = \# \text{ cars passing through a light in 1 hour}. \]

Disjoint time intervals are independent.

Know: \(\mathbb{E}[X] = \lambda \) for some given \(\lambda > 0 \)

Discrete version: \(n \) intervals, each of length \(1/n \).

In each interval, there is a car with probability \(p = \lambda/n \) (assume \(\leq 1 \) car can pass by)

Each interval is Bernoulli: \(X_i = 1 \) if car in \(i^{th} \) interval (0 otherwise). \(P(X_i = 1) = \lambda/n \)

\[
X = \sum_{i=1}^{n} X_i \quad X \sim \text{Bin}(n, p) \quad P(X = i) = \binom{n}{i} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}
\]

indeed! \(\mathbb{E}[X] = pn = \lambda \)
Don’t like discretization

We want now $n \to \infty$

$$P(X = i) = \binom{n}{i} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i} = \frac{n!}{(n-i)! n^i} \frac{\lambda^i}{i!} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-i}$$

$\to P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$
Poisson Distribution

• Suppose “events” happen, independently, at an average rate of λ per unit time.

• Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \text{Poi}(\lambda)$) and has distribution (PMF):

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!} \quad i = 0, 1, 2, ...$$

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Assume fixed average rate

$$E(X) = \lambda$$

$$\text{Var}(X) = \lambda$$
Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i = 0, 1, 2, 3 \ldots$,

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Poisson approximates binomial when:
- n is very large, p is very small, and $\lambda = np$ is “moderate”
 - e.g. $(n > 20 \text{ and } p < 0.05)$, $(n > 100 \text{ and } p < 0.1)$

Formally, Binomial approaches Poisson in the limit as $n \to \infty$ (equivalently, $p \to 0$) while holding $np = \lambda$
Probability Mass Function – Convergence of Binomials

\[\lambda = 5 \]
\[p = \frac{5}{n} \]
\[n = 10, 15, 20 \]

as \(n \to \infty \), \(\text{Binomial}(n, p = \frac{\lambda}{n}) \to \text{Poi}(\lambda) \)
Sum of Independent Poisson RVs

Let $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.

Let $Z = X + Y$. What kind of random variable is Z? Aka what is the “distribution” of Z?

Intuition first:

- X is measuring number of (type 1) events that happen in, say, an hour if they happen at an average rate of λ_1 per hour.
- Y is measuring number of (type 2) events that happen in, say, an hour if they happen at an average rate of λ_2 per hour.
- Z is measuring total number of events of both types that happen in, say, an hour, if type 1 and type 2 events occur independently.
Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.

Let $Z = X + Y$. For all $z = 0, 1, 2, 3, \ldots$,

$$P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

More generally, let $X_1 \sim \text{Poi}(\lambda_1), \ldots, X_n \sim \text{Poi}(\lambda_n)$ such that $\lambda = \Sigma_i \lambda_i$.

Let $Z = \Sigma_i X_i$

$$P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$
Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.

Let $Z = X + Y$. For all $z = 0, 1, 2, 3, \ldots$,

$$P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

Proof

$$P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j)$$ \text{Law of total probability}
Proof

\[P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j) \]

Law of total probability

\[= \sum_{j=0}^{z} P(X = j) P(Y = z - j) = \sum_{j=0}^{z} e^{-\lambda_1} \cdot \frac{\lambda_1^j}{j!} \cdot e^{-\lambda_2} \cdot \frac{\lambda_2^{z-j}}{z-j!} \]

Independence

\[= e^{-\lambda_1-\lambda_2} \left(\sum_{j=0}^{z} \frac{1}{j! \cdot z-j!} \cdot \lambda_1^j \lambda_2^{z-j} \right) \]

\[= e^{-\lambda} \left(\sum_{j=0}^{z} \frac{z!}{j! \cdot z-j!} \cdot \lambda_1^j \lambda_2^{z-j} \right) \frac{1}{z!} \]

\[= e^{-\lambda} \cdot (\lambda_1 + \lambda_2)^z \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^z \cdot \frac{1}{z!} \]

Binomial Theorem
Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i = 0,1,2,3 \ldots$,

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

General principle:
- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\text{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and np is moderate
- Sum of independent Poisson is still a Poisson
<table>
<thead>
<tr>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wrap up Poisson random variables</td>
</tr>
<tr>
<td>• An Application: Bloom Filters!</td>
</tr>
</tbody>
</table>
Basic Problem

Problem: Store a subset S of a large set U.

Example. $U =$ set of 128 bit strings
$S =$ subset of strings of interest
$|U| \approx 2^{128}$
$|S| \approx 1000$

Two goals:
1. **Very fast** (ideally constant time) answers to queries “Is $x \in S$?” for any $x \in U$.
2. **Minimal storage** requirements.
Naïve Solution I – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$S = \{0, 2, \ldots, K\}$

Membership test: To check if $x \in S$ just check whether $A[x] = 1$.

→ constant time! 👍 😊

Storage: Require storing 2^{128} bits, even for small S. 😞 😢

$A[x] = \begin{cases}
1 & \text{if } x \in S \\
0 & \text{if } x \notin S
\end{cases}$
Naïve Solution II – Small Storage

Idea: Represent S as a list with $|S|$ entries.

$$S = \{0, 2, \ldots, K\}$$

Storage: Grows with $|S|$ only 😊 😊

Membership test: Check $x \in S$ requires time linear in $|S|$ 😞 😞

(Can be made logarithmic by using a tree)
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)

hash function $h: U \rightarrow [m]$
Hashing: collisions

Collisions occur when $h(x) = h(y)$ for some distinct $x, y \in S$, i.e., two elements of set map to the same location.

- Common solution: chaining – at each location (bucket) in the table, keep linked list of all elements that hash there.
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)

Challenge 1: Ensure $h(x) \neq h(y)$ for most $x, y \in S$

Challenge 2: Ensure $m = O(|S|)$
Good hash functions to keep collisions low

• The hash function h is good iff it
 – distributes elements uniformly across the m array locations so that
 – pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
Hashing: summary

Hash Tables

• They store the data itself
• With a good hash function, the data is well distributed in the table and lookup times are small.
• However, they need at least as much space as all the data being stored, i.e., \(m = \Omega(|S|) \)

In some cases, \(|S|\) is huge, or not known a-priori ...

Can we do better!?
Bloom Filters to the rescue
(Named after Burton Howard Bloom)
Bloom Filters – Main points

- Probabilistic data structure.
- Close cousins of hash tables.
 - But: Ridiculously space efficient
- Occasional errors, specifically false positives.
Bloom Filters

• Stores information about a set of elements $S \subseteq U$.
• Supports two operations:
 1. $\text{add}(x)$ - adds $x \in U$ to the set S
 2. $\text{contains}(x)$ – ideally: true if $x \in S$, false otherwise
Bloom Filters

- Stores information about a set of elements \(S \subseteq U \).
- Supports two operations:
 1. **add**\((x)\) - adds \(x \in U \) to the set \(S \)
 2. **contains**\((x)\) – ideally: true if \(x \in S \), false otherwise

Instead, relaxed guarantees:

- False \(\rightarrow \) **definitely** not in \(S \)
- True \(\rightarrow \) **possibly** in \(S \)

 [i.e. we could have **false positives**]
Bloom Filters – Why Accept False Positives?

- **Speed** – both `add` and `contains` very very fast.
- **Space** – requires a miniscule amount of space relative to storing all the actual items that have been added.
 - Often just 8 bits per inserted item!
- **Fallback mechanism** – can distinguish false positives from true positives with extra cost
 - Ok if mostly negatives expected + low false positive rate
Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don’t need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.
Bloom Filters – More Applications

• Any scenario where space and efficiency are important.
• Used a lot in networking
• Internet routers often use Bloom filters to track blocked IP addresses.
• In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
• Google BigTable uses Bloom filters to reduce disk lookups
• And on and on...
Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array “the Bloom filter”

- k rows t_1, \ldots, t_k, each of size m
- Think of each row as an m-bit vector

k different hash functions $h_1, \ldots, h_k : U \rightarrow [m]$
Bloom Filters - Initialization

function `INITIALIZE(k, m)`

for `i = 1, \ldots, k`: do

\[t_i = \text{new bit vector of } m \text{ 0s} \]

Number of hash functions

Size of array associated to each hash function.

for each hash function, initialize an empty bit vector of size `m`
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{INITIALIZE}(k, m) \)

\[
\text{for } i = 1, \ldots, k: \text{ do} \\
\quad t_i = \text{new bit vector of } m \text{ 0s}
\]

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Add

function ADD(x)
 for i = 1, ..., k: do
 $t_i[h_i(x)] = 1$
 for each hash function h_i

Index into i-th bit-vector, at index produced by hash function and set to 1

$h_i(x) \rightarrow$ result of hash function h_i on x
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

$$\text{function } \text{ADD}(x)$$
$$\text{for } i = 1, \ldots, k: \text{ do}$$
$$t_i[h_i(x)] = 1$$

$$\text{add(“thisisavirus.com”)}$$
$$h_1(“thisisavirus.com”) \rightarrow 2$$

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function ADD(x)
    for $i = 1, \ldots, k$: do
        $t_i[h_i(x)] = 1$

add("thisisavirus.com")

$h_1("thisisavirus.com") \rightarrow 2$
$h_2("thisisavirus.com") \rightarrow 1$
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

Function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \): do

\[
t_i[h_i(x)] = 1
\]

\[\text{add}(\text{“thisisavirus.com”})\]

\[
h_1(\text{“thisisavirus.com”}) \rightarrow 2
\]

\[
h_2(\text{“thisisavirus.com”}) \rightarrow 1
\]

\[
h_3(\text{“thisisavirus.com”}) \rightarrow 4
\]

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $ADD(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

```
add("thisisavirus.com")

$h_1(“thisisavirus.com”) → 2$
$h_2(“thisisavirus.com”) → 1$
$h_3(“thisisavirus.com”) → 4$
```

<table>
<thead>
<tr>
<th>Index $→$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Contains

\begin{verbatim}
function CONTAINS(x)
 return \(t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1 \)
\end{verbatim}

Returns True if the bit vector \(t_i \) for each hash function has bit 1 at index determined by \(h_i(x) \),

Returns False otherwise
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```python
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
contains("thisisavirus.com")
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

Function

```plaintext
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“thisisavirus.com”)

Index Table

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{CONTAINS}(x) \)

return \(t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)

\[\begin{array}{c|ccccc}
\text{Index} & 0 & 1 & 2 & 3 & 4 \\
\hline
\text{t}_1 & 0 & 0 & 1 & 0 & 0 \\
\text{t}_2 & 0 & 1 & 0 & 0 & 0 \\
\text{t}_3 & 0 & 0 & 0 & 0 & 1 \\
\end{array}\]

contains(“thisisavirus.com”)

\(h_1(“thisisavirus.com”) \to 2 \)

\(h_2(“thisisavirus.com”) \to 1 \)
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function \ CONTAINS}(x) \\
\text{return } t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1
\]

\[
\begin{array}{c|ccccc}
\hline
\text{Index} \rightarrow & 0 & 1 & 2 & 3 & 4 \\
\hline
\text{t}_1 & 0 & 0 & 1 & 0 & 0 \\
\text{t}_2 & 0 & 1 & 0 & 0 & 0 \\
\text{t}_3 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
\]

contains("thisisavirus.com")

\(h_1("thisisavirus.com") \rightarrow 2 \)
\(h_2("thisisavirus.com") \rightarrow 1 \)
\(h_3("thisisavirus.com") \rightarrow 4 \)
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

```plaintext
function CONTAINS(x)
    return \( t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)
```

contains(“thisisavirus.com”)

\[
\begin{array}{c|cccc}
\text{Index} & 0 & 1 & 2 & 3 & 4 \\
\hline
\text{t}_1 & 0 & 0 & 1 & 0 & 0 \\
\text{t}_2 & 0 & 1 & 0 & 0 & 0 \\
\text{t}_3 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

Since all conditions satisfied, returns True (correctly)
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{add(“totallynotsuspicious.com”)}
\]

function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \): do

\(t_i[h_i(x)] = 1 \)

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function ADD(x)
    for $i = 1, \ldots, k$: do
        $t_i[h_i(x)] = 1$
```

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

Function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \) do

\[t_i[h_i(x)] = 1 \]

add(“totallynotsuspicious.com”)

\[h_1(“totallynotsuspicious.com”) \rightarrow 1 \]

\[h_2(“totallynotsuspicious.com”) \rightarrow 0 \]

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$

$h_2(“totallynotsuspicious.com”) \rightarrow 0$

$h_3(“totallynotsuspicious.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$
for $i = 1, \ldots, k$: do
\[t_i[h_i(x)] = 1 \]

add(“totallynotsuspicious.com”)
\[h_1(“totallynotsuspicious.com”) \rightarrow 1 \]
\[h_2(“totallynotsuspicious.com”) \rightarrow 0 \]
\[h_3(“totallynotsuspicious.com”) \rightarrow 4 \]

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
  return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \ldots \land t_k[h_k(x)] = 1$
```

contains(“verynormalsite.com”)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

```
function CONTAINS(x)
    return \( t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)
```

\begin{tabular}{|c|c|c|c|c|c|}
\hline
Index \(\rightarrow \) & 0 & 1 & 2 & 3 & 4 \\
\hline
\(t_1 \) & 0 & 1 & 1 & 0 & 0 \\
\hline
\(t_2 \) & 1 & 1 & 0 & 0 & 0 \\
\hline
\(t_3 \) & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

contains(“verynormalsite.com”)
\(h_1(“verynormalsite.com”) \rightarrow 2 \)

True
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```python
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“verynormalsite.com”)

$h_1(“verynormalsite.com”) \rightarrow 2$
$h_2(“verynormalsite.com”) \rightarrow 0$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function } \text{CONTAINS}(x) \\
\text{return } t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1
\]

\[
\begin{array}{c|c|c|c|c|c}
\text{Index} & 0 & 1 & 2 & 3 & 4 \\
\hline
\text{t}_1 & 0 & 1 & 1 & 0 & 0 \\
\text{t}_2 & 1 & 1 & 0 & 0 & 0 \\
\text{t}_3 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

contains(“verynormalsite.com”)

\[
\begin{align*}
\text{h}_1(“\text{verynormalsite.com”}) & \rightarrow 2 \\
\text{h}_2(“\text{verynormalsite.com”}) & \rightarrow 0 \\
\text{h}_3(“\text{verynormalsite.com”}) & \rightarrow 4
\end{align*}
\]
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function } \text{CONTAINS}(x) \\
\quad \text{return } t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
\]

contains("verynormalsite.com")

\[
\begin{align*}
 h_1("verynormalsite.com") & \to 2 \\
 h_2("verynormalsite.com") & \to 0 \\
 h_3("verynormalsite.com") & \to 4
\end{align*}
\]

Since all conditions satisfied, returns \text{True} (incorrectly)
Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

• Check if $x \in S$

function INITIALIZE(k, m)
 for $i = 1, ..., k$: do
 $t_i = \text{new bit vector of } m \text{ 0s}$

function ADD(x)
 for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

function CONTAINS(x)
 return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
What you can’t do with Bloom filters

• There is no **delete** operation
 – Once you have added something to a Bloom filter for \(S \), it stays

• You can’t use a Bloom filter to name any element of \(S \)

But what you **can** do makes them very effective!
Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that $\text{contains}(x)$ returns true if $\text{add}(x)$ was never executed before?
Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that $\text{contains}(x)$ returns true if $\text{add}(x)$ was never executed before?

Probability over what?! Over the choice of the h_1, \ldots, h_k

Assumptions for the analysis:

- Each $h_i(x)$ is uniformly distributed in $[m]$ for all x and i
- Hash function outputs for each h_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other
False positive probability – Events

Assume we perform \(\text{add}(x_1), ..., \text{add}(x_n) \) + \(\text{contains}(x) \) for \(x \notin \{x_1, ..., x_n\} \)

Event \(E_i \) holds iff \(h_i(x) \in \{h_i(x_1), ..., h_i(x_n)\} \)

\[
P(\text{false positive}) = P(E_1 \cap E_2 \cap \cdots \cap E_k) = \prod_{i=1}^{k} P(E_i)
\]

\(h_1, \ldots, h_k \) independent
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), ..., h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c | h_i(x) = z)$$
False positive probability – Events

$P(E_i^c \mid h_i(x) = z) = P(h_i(x_1) \neq z, \ldots, h_i(x_n) \neq z \mid h_i(x) = z)$

$= P(h_i(x_1) \neq z, \ldots, h_i(x_n) \neq z)$

$= \prod_{j=1}^{n} P(h_i(x_j) \neq z)$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

Independence of values of h_i on different inputs
False positive probability – Events

\[P(E_i^c | h_i(x) = z) = P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z | h_i(x) = z) \]

\[= P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z) \]

\[= \prod_{j=1}^{n} P(h_i(x_j) \neq z) \]

\[= \prod_{j=1}^{n} \left(1 - \frac{1}{m}\right) = \left(1 - \frac{1}{m}\right)^n \]

\[P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c | h_i(x) = z) = \left(1 - \frac{1}{m}\right)^n \]

Event \(E_i^c \) holds iff \(h_i(x) \neq h_i(x_1) \) and ... and \(h_i(x) \neq h_i(x_n) \)
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

$$\text{FPR} = \prod_{i=1}^{k} \left(1 - P(E_i^c)\right) = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$
False Positivity Rate – Example

\[FPR = \left(1 - \left(1 - \frac{1}{m} \right)^n \right)^k \]

e.g., \(n = 5,000,000 \)
\(k = 30 \)
\(m = 2,500,000 \)

\[FPR = 1.28\% \]
Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k = 30$ and $m = 2,500,000$

<table>
<thead>
<tr>
<th>Hash Table</th>
<th>Bloom Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(optimistic) $5,000,000 \times 40B = 200$MB</td>
<td>$2,500,000 \times 30 = 75,000,000$ bits < 10 MB</td>
</tr>
</tbody>
</table>
Time

- Say avg user visits **102,000** URLs in a year, of which **2,000** are malicious.
- **0.5** seconds to do lookup in the database, **1ms** for lookup in Bloom filter.
- Suppose the false positive rate is **3%**

$$
1\text{ms} + \frac{100000 \times 0.03 \times 500\text{ms}}{102000} + 2000 \times 500\text{ms} \approx 25.51\text{ms}
$$

- **Bloom filter lookup**
- **malicious URLs**
Bloom Filters typical of...

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!