CSE 312
Foundations of Computing II

Lecture 13: Wrap up Poisson r.v.s + Bloom Filters

Anna’s office hours on Saturday (tmw) from 2-3pm
(not 3-4pm)
Agenda

- More on Poisson random variables
- An Application: Bloom Filters!
Preview: Poisson

Model: \(X \) is \# events that occur in an hour

– Expect to see 3 events per hour (but will be random)
– The expected number of events in \(t \) hours, is \(3t \)
– Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

\(X = \# \) of cars passing through a light in 1 hour
Example – Model the process of cars passing through a light in 1 hour

\(X = \# \) cars passing through a light in 1 hour. Disjoint time intervals are independent.

Know: \(\mathbb{E}[X] = \lambda \) for some given \(\lambda > 0 \)

Discrete version: \(n \) intervals, each of length \(1/n \).

In each interval, there is a car with probability \(p = \lambda/n \) (assume \(\leq 1 \) car can pass by)

Each interval is Bernoulli: \(X_i = 1 \) if car in \(i^{th} \) interval (0 otherwise). \(P(X_i = 1) = \lambda / n \)

\[
X = \sum_{i=1}^{n} X_i \quad X \sim \text{Bin}(n, p) \quad P(X = i) = \binom{n}{i} \left(\frac{\lambda}{n} \right)^i \left(1 - \frac{\lambda}{n} \right)^{n-i}
\]

indeed! \(\mathbb{E}[X] = pn = \lambda \)
Don’t like discretization

We want now \(n \to \infty \)

\[
P(X = i) = \binom{n}{i} \left(\frac{\lambda}{n} \right)^i \left(1 - \frac{\lambda}{n} \right)^{n-i}
\]

\[
\to P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}
\]
Poisson Distribution

- Suppose “events” happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \text{Poi}(\lambda)$) and has distribution (PMF):

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!} \quad i = 0, 1, 2, ...$$

Several examples of “Poisson processes”:
- # of cars passing through a traffic light in 1 hour
- # of requests to web servers in an hour
- # of photons hitting a light detector in a given interval
- # of patients arriving to ER within an hour

Assume fixed average rate

$$E(X) = \lambda$$
$$\text{Var}(X) = \lambda$$
Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i = 0, 1, 2, 3, \ldots$,

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Poisson approximates binomial when:
- n is very large, p is very small, and $\lambda = np$ is “moderate”
 - e.g. $(n > 20$ and $p < 0.05)$, $(n > 100$ and $p < 0.1)$
- Formally, Binomial approaches Poisson in the limit as $n \to \infty$ (equivalently, $p \to 0$) while holding $np = \lambda$
\(\lambda = 5 \)
\(p = \frac{5}{n} \)
\(n = 10, 15, 20 \)

\(as \ n \to \infty, \ \text{Binomial}(n, \ p = \frac{\lambda}{n}) \to \text{pois}(\lambda) \)
Sum of Independent Poisson RVs

Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.
Let $Z = X + Y$. What kind of random variable is Z?
Aka what is the “distribution” of Z?

Intuition first:

• X is measuring number of (type 1) events that happen in, say, an hour if they happen at an average rate of λ_1 per hour.
• Y is measuring number of (type 2) events that happen in, say, an hour if they happen at an average rate of λ_2 per hour.
• Z is measuring total number of events of both types that happen in, say, an hour, if type 1 and type 2 events occur independently.
Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.

Let $Z = X + Y$. For all $z = 0, 1, 2, 3 ...,$

$$P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

More generally, let $X_1 \sim \text{Poi}(\lambda_1), \ldots, X_n \sim \text{Poi}(\lambda_n)$ such that $\lambda = \sum_i \lambda_i$.

Let $Z = \sum_i X_i$

$$P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$
Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.
Let $Z = X + Y$. For all $z = 0,1,2,3 \ldots$,

$$P(Z = z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!} \quad z = 0,1,2,3 \ldots$$

Proof

$$P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j)$$

Law of total probability

$$(\alpha + \beta)^2 = \sum_{j=0}^{2} \binom{2}{j} \alpha^j \beta^{2-j}$$
Proof

\[P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z-j) \]

\[= \sum_{j=0}^{z} P(X = j) P(Y = z-j) = \sum_{j=0}^{z} e^{-\lambda_1} \frac{\lambda_1^j}{j!} e^{-\lambda_2} \frac{\lambda_2^{z-j}}{z-j!} \]

\[= e^{-\lambda_1-\lambda_2} \left(\sum_{j=0}^{z} \frac{1}{j! (z-j)!} \lambda_1^j \lambda_2^{z-j} \right) \]

\[= e^{-\lambda} \left(\sum_{j=0}^{z} \frac{z!}{j! (z-j)!} \frac{\lambda_1^j \lambda_2^{z-j}}{z!} \right) \frac{1}{z!} \]

\[= e^{-\lambda} \cdot (\lambda_1 + \lambda_2)^z \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^z \cdot \frac{1}{z!} \]

Law of total probability

Independence

Binomial Theorem

\[n = \lambda_1 + \lambda_2 \]
Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i = 0, 1, 2, 3 \ldots$,

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\text{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and np is moderate
- Sum of independent Poisson is still a Poisson
Agenda

• Wrap up Poisson random variables
• An Application: Bloom Filters!
Basic Problem

Problem: Store a subset S of a large set U.

Example. $U =$ set of 128 bit strings
$S =$ subset of strings of interest

<table>
<thead>
<tr>
<th>U</th>
<th>$\approx 2^{128}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>≈ 1000</td>
</tr>
</tbody>
</table>

Two goals:

1. **Very fast** (ideally constant time) answers to queries “Is $x \in S$?” for any $x \in U$.
2. **Minimal storage** requirements.
Naïve Solution I – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$S = \{0,2,\ldots,K\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>K</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Membership test: To check $x \in S$ just check whether $A[x] = 1$.

→ **constant time!** 🤓😊

Storage: Require storing 2^{128} bits, even for small S. 😞😢
Naïve Solution II – Small Storage

Idea: Represent S as a list with $|S|$ entries.

$S = \{0, 2, \ldots, K\}$

Storage: Grows with $|S|$ only 🤟 😊

Membership test: Check $x \in S$ requires time linear in $|S|$ (Can be made logarithmic by using a tree) 😞 😢
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)
Hashing: collisions

Collisions occur when $h(x) = h(y)$ for some distinct $x, y \in S$, i.e., two elements of set map to the same location.

- Common solution: chaining – at each location (bucket) in the table, keep linked list of all elements that hash there.
Hash Table

Idea: Map elements in \(S \) into an array \(A \) of size \(m \) using a hash function \(h \)

Membership test: To check \(x \in S \) just check whether \(A[h(x)] = x \)

Storage: \(m \) elements (size of array)

Challenge 2: Ensure \(m = O(|S|) \)

Challenge 1: Ensure \(h(x) \neq h(y) \) for most \(x, y \in S \)
Good hash functions to keep collisions low

• The hash function h is good iff it
 – distributes elements uniformly across the m array locations so that
 – pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
Hashing: summary

Hash Tables

• They store the data itself
• With a good hash function, the data is well distributed in the table and lookup times are small.
• However, they need at least as much space as all the data being stored, i.e., \(m = \Omega(|S|) \)

\[
X: \# \text{elts that map to location 1 in table} \nonumber
\]
\[
|S| = m \text{ elts} \quad \text{table size} = m
\]

\[
E(X) = 1
\]

In some cases, \(|S|\) is huge, or not known a-priori ...

Can we do better!?
Bloom Filters to the rescue
(Named after Burton Howard Bloom)
Bloom Filters – Main points

- Probabilistic data structure.
- Close cousins of hash tables.
 - But: Ridiculously space efficient
- Occasional errors, specifically false positives.
Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 1. $\text{add}(x)$ - adds $x \in U$ to the set S
 2. $\text{contains}(x)$ – ideally: true if $x \in S$, false otherwise
Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 1. $\text{add}(x)$ - adds $x \in U$ to the set S
 2. $\text{contains}(x)$ – ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:
- False \rightarrow **definitely** not in S
- True \rightarrow **possibly** in S
 [i.e. we could have **false positives**]
Bloom Filters – Why Accept False Positives?

- **Speed** – both *add* and *contains* very very fast.
- **Space** – requires a miniscule amount of space relative to storing all the actual items that have been added.
 - Often just 8 bits per inserted item!
- **Fallback mechanism** – can distinguish false positives from true positives with extra cost
 - Ok if mostly negatives expected + low false positive rate
Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don’t need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.
Bloom Filters – More Applications

• Any scenario where space and efficiency are important.
• Used a lot in networking
• Internet routers often use Bloom filters to track blocked IP addresses.
• In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
• Google BigTable uses Bloom filters to reduce disk lookups
• And on and on...
Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array “the Bloom filter”

- k rows t_1, \ldots, t_k, each of size m
- Think of each row as an m-bit vector

k different hash functions $h_1, \ldots, h_k : U \rightarrow [m]$
Bloom Filters - Initialization

\begin{itemize}
 \item Number of hash functions
 \item Size of array associated to each hash function.
\end{itemize}

\begin{itemize}
 \item for each hash function, initialize an empty bit vector of size \(m \)
\end{itemize}

\textbf{function} \texttt{INITIALIZE}(k, m)

\begin{itemize}
 \item \texttt{for} \(i = 1, \ldots, k \): \texttt{do}
 \item \(t_i = \text{new bit vector of} \ m \ 0\text{s} \)
\end{itemize}
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function `INITIALIZE(k, m)`

for $i = 1, ..., k$: do

 t_i = new bit vector of m 0s

<table>
<thead>
<tr>
<th>Index $→$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Add

function \text{ADD}(x)

\text{for } i = 1, \ldots, k: \text{ do}

t_i[h_i(x)] = 1

for each hash function \(h_i \)

Index into \(i \)-th bit-vector, at index produced by hash function and set to 1

\(h_i(x) \rightarrow \) result of hash function \(h_i \) on \(x \)
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function `ADD(x)`

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add("thisisavirus.com")

$h_1(\text{"thisisavirus.com"}) \rightarrow 2$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add("thisisavirus.com")

$h_1(\text{"thisisavirus.com"}) \rightarrow 2$

$h_2(\text{"thisisavirus.com"}) \rightarrow 1$

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function ADD(x)
    for $i = 1, \ldots, k$: do
        $t_i[h_i(x)] = 1$

add("thisisavirus.com")
    $h_1("thisisavirus.com") \rightarrow 2$
    $h_2("thisisavirus.com") \rightarrow 1$
    $h_3("thisisavirus.com") \rightarrow 4$
```

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function ADD(x)
    for $i = 1, \ldots, k$: do
        $t_i[h_i(x)] = 1$
```

add("thisisavirus.com")

$h_1("thisisavirus.com") \rightarrow 2$
$h_2("thisisavirus.com") \rightarrow 1$
$h_3("thisisavirus.com") \rightarrow 4$

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Contains

```python
function CONTAINS(x)
    return \( t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)
```

Returns True if the bit vector \(t_i \) for each hash function has bit 1 at index determined by \(h_i(x) \),

Returns False otherwise
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function contains(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“thisisavirus.com”)

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function} \ \text{CONTAINS}(x) \\
\text{return} \ t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
\]

\[
\text{contains}(“thisisavirus.com”) \\
h_1(“thisisavirus.com”) \rightarrow 2
\]

True

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>(\boxed{1})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\boxed{1})</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains("thisisavirus.com")

$h_1("thisisavirus.com") \rightarrow 2$

$h_2("thisisavirus.com") \rightarrow 1$

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function \textsc{contains}(x)
\hspace{1em} \text{return } t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1

contains(“thisisavirus.com”)

\begin{tabular}{|c|c|c|c|c|c|}
\hline
Index & 0 & 1 & 2 & 3 & 4 \\
\hline
\hline
t_1 & 0 & 0 & 1 & 0 & 0 \\
\hline
t_2 & 0 & 1 & 0 & 0 & 0 \\
\hline
t_3 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

$h_1(“thisisavirus.com”) \rightarrow 2$
$h_2(“thisisavirus.com”) \rightarrow 1$
$h_3(“thisisavirus.com”) \rightarrow 4$
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

```
\[
\begin{array}{cccccc}
\text{Index} & 0 & 1 & 2 & 3 & 4 \\
\hline
\text{t}_1 & 0 & 0 & 1 & 0 & 0 \\
\text{t}_2 & 0 & 1 & 0 & 0 & 0 \\
\text{t}_3 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]
```

Since all conditions satisfied, returns True (correctly)

contains(“thisisavirus.com”)

\[
\begin{array}{l}
h_1(“thisisavirus.com”) \rightarrow 2 \\
h_2(“thisisavirus.com”) \rightarrow 1 \\
h_3(“thisisavirus.com”) \rightarrow 4 \\
\end{array}
\]
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
add("totallynotsuspicious.com")
```

function ADD(x)

```
for $i = 1, \ldots, k$: do
$\#[h_i(x)] = 1$
```

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$

```
for $i = 1, \ldots, k$: do
  $t_i[h_i(x)] = 1$
```

add(“totallynotsuspicious.com”)
$h_1(“totallynotsuspicious.com”) \rightarrow 1$

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function `ADD(x)`

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

$h_1("totallynotsuspicious.com") \rightarrow 1$

$h_2("totallynotsuspicious.com") \rightarrow 0$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$
for $i = 1, \ldots, k$: do
 $t_i[h_i(x)] = 1$

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$
$h_2(“totallynotsuspicious.com”) \rightarrow 0$
$h_3(“totallynotsuspicious.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function ADD(x)
    for $i = 1, \ldots, k$: do
        $t_i[h_i(x)] = 1$
```

```
add("totallynotsuspicious.com")
    $h_1("totallynotsuspicious.com") \rightarrow 1$
    $h_2("totallynotsuspicious.com") \rightarrow 0$
    $h_3("totallynotsuspicious.com") \rightarrow 4$
```

<table>
<thead>
<tr>
<th></th>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{CONTAINS}(x)$

return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$

contains(“verynormalsite.com”)

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{CONTAINS}(x)$
 return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

contains(“verynormalsite.com”)

$h_1(“verynormalsite.com”) \rightarrow 2$

True

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

function $\text{CONTAINS}(x)$

\[
\text{return } t_1[h_1(x)] \land t_2[h_2(x)] \land \cdots \land t_k[h_k(x)] = 1
\]

contains(“verynormalsite.com”)

$h_1(“verynormalsite.com”) \rightarrow 2$

$h_2(“verynormalsite.com”) \rightarrow 0$
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
    return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
```

contains(“verynormalsite.com”)

$\begin{array}{c}
h_1(“verynormalsite.com”) \rightarrow 2 \\
h_2(“verynormalsite.com”) \rightarrow 0 \\
h_3(“verynormalsite.com”) \rightarrow 4 \\
\end{array}$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“verynormalsite.com”)

$h_1(“verynormalsite.com”) \rightarrow 2$

$h_2(“verynormalsite.com”) \rightarrow 0$

$h_3(“verynormalsite.com”) \rightarrow 4$

Since all conditions satisfied, returns True (incorrectly)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters – Three operations

- Set up Bloom filter for $S = \emptyset$

 function \text{INITIALIZE}(k, m)
 for $i = 1, \ldots, k$: do
 $t_i = \text{new bit vector of } m \text{ 0s}$

- Update Bloom filter for $S \leftarrow S \cup \{x\}$

 function \text{ADD}(x)
 for $i = 1, \ldots, k$: do
 $t_i[h_i(x)] = 1$

- Check if $x \in S$

 function \text{CONTAINS}(x)
 return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
What you can’t do with Bloom filters

• There is no delete operation
 – Once you have added something to a Bloom filter for S, it stays

• You can’t use a Bloom filter to name any element of S

But what you can do makes them very effective!
Brain Break
Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that \texttt{contains}(x) returns true if \texttt{add}(x) was never executed before?
Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that $\text{contains}(x)$ returns true if $\text{add}(x)$ was never executed before?

Probability over what?! Over the choice of the h_1, \ldots, h_k

Assumptions for the analysis:
- Each $h_i(x)$ is uniformly distributed in $[m]$ for all x and i
- Hash function outputs for each h_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other
False positive probability – Events

Assume we perform \(\text{add}(x_1), ..., \text{add}(x_n) \) + \(\text{contains}(x) \) for \(x \notin \{x_1, ..., x_n\} \)

Event \(E_i \) holds iff \(h_i(x) \in \{h_i(x_1), ..., h_i(x_n)\} \)

\[
P(\text{false positive}) = P(E_1 \cap E_2 \cap \cdots \cap E_k) = \prod_{i=1}^{k} P(E_i)
\]

\(h_1, ..., h_k \) independent
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), ..., h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c \mid h_i(x) = z)$$
False positive probability – Events

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ...
and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c | h_i(x) = z) = P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z | h_i(x) = z)$$

Independence of values of h_i on different inputs

$$= P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z)$$

$$= \prod_{j=1}^{n} P(h_i(x_j) \neq z)$$
False positive probability – Events

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

\[
P(E_i^c | h_i(x) = z) = P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z | h_i(x) = z)
\]

\[
= P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z)
\]

\[
= \prod_{j=1}^{n} P(h_i(x_j) \neq z)
\]

\[
= \prod_{j=1}^{n} \left(1 - \frac{1}{m}\right) = \left(1 - \frac{1}{m}\right)^n
\]

\[
P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c | h_i(x) = z) = \left(1 - \frac{1}{m}\right)^n
\]

Independence of values of h_i on different inputs

Outputs of h_i uniformly spread
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

\[P(E_i^c) = \left(1 - \frac{1}{m}\right)^n \]

\[\text{FPR} = \prod_{i=1}^{k} (1 - P(E_i^c)) = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k \]
False Positivity Rate – Example

\[
FPR = \left(1 - \left(1 - \frac{1}{m} \right)^n \right)^k
\]

e.g., \(n = 5,000,000 \)
\(k = 30 \)
\(m = 2,500,000 \)

\[
FPR = 1.28\%
\]
Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k = 30$ and $m = 2,500,000$

<table>
<thead>
<tr>
<th>Hash Table</th>
<th>Bloom Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(optimistic) $5,000,000 \times 40B = 200\text{MB}$</td>
<td>$2,500,000 \times 30 = 75,000,000$ bits $< 10\text{MB}$</td>
</tr>
</tbody>
</table>
Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%

\[
\text{false positives} = \frac{100000 \times 0.03 \times 500\text{ms}}{102000} + 2000 \times 500\text{ms} \approx 25.51\text{ms}
\]
Bloom Filters typical of....

... randomized algorithms and randomized data structures.

• Simple
• Fast
• Efficient
• Elegant
• Useful!