
CSE 312: Foundations of Computing II Summer 2024

Section 8 – Solutions

Review

- Law of Total Probability (partition based on value of a r.v.): If X is a discrete random variable, then

PpAq “
ÿ

xPΩX

PpA|X “ xqpXpxq

If X is a continuous random variable, then

PpAq “

ż 8

´8

PpA|X “ xqfXpxq dx

- Conditional Expectation: Let X and Y be random variables. Then, the conditional expectation of X given
Y “ y is

ErX|Y “ ys “
ÿ

xPΩX

x ¨ P pX “ x|Y “ yq X discrete

and for any event A,
ErX|As “

ÿ

xPΩX

x ¨ P pX “ x|Aq X discrete

Note that linearity of expectation still applies to conditional expectation: ErX ` Y |As “ ErX|As ` ErY |As

- Law of Total Expectation (Event Version): Let X be a random variable, and let events A1, ..., An partition
the sample space. Then,

ErXs “

n
ÿ

i“1

ErX|AisP pAiq

- Law of Total Expectation (RV Version): Suppose X and Y are random variables. Then,

ErXs “
ÿ

y

ErX|Y “ yspY pyq Y discrete r.v..

ErXs “

ż 8

´8

ErX|Y “ ysfY pyqdy Y continuous r.v.

Maximum Likelihood Estimation

1) Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

2) Likelihood: Let x1, . . . xn be iid realizations from probability mass function pXpx ; θq (if X discrete) or
density fXpx ; θq (if X continuous), where θ is a parameter (or a vector of parameters). We define the
likelihood function to be the probability of seeing the data.

If X is discrete:

Lpx1, . . . , xn ; θq “

n
ź

i“1

pXpxi ; θq

If X is continuous:

Lpx1, . . . , xn ; θq “

n
ź

i“1

fXpxi ; θq
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3) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter
(or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE “ argmax
θ

Lpx1, . . . , xn ; θq “ argmax
θ

lnLpx1, . . . , xn ; θq

4) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the
logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the
same as the value that maximizes the log-likelihood.

If X is discrete:

lnLpx1, . . . , xn ; θq “

n
ÿ

i“1

ln pXpxi ; θq

If X is continuous:

lnLpx1, . . . , xn ; θq “

n
ÿ

i“1

ln fXpxi ; θq

5) Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.

(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.

(c) Take the second derivative and show that θ̂ indeed is a maximizer, that B
2L

Bθ2 ă 0 at θ̂. Also ensure
that it is the global maximizer: check points of non-differentiability and boundary values.

(d) If we are finding the MLE for a set of parameters, then we set up the system of equations obtained by
taking the partial derivative of the log-likelihood function with respect to each of the parameters and
setting it equal to 0. We then solve this system to get the MLEs. (And again, second order conditions
need to be checked.)

6) An estimator θ̂ for a parameter θ of a probability distribution is unbiased iff Erθ̂pX1, . . . , Xnqs “ θ

Task 1 – Content Review

a) True or False: The Log-Likelihood gives a slightly different estimate, but because it is close enough and
easier to compute we use it for our estimate of θ.

False: Since the logarithm is a strictly increasing function, the value of θ that maximizes the
likelihood will be exactly the same as the value that maximizes the log-likelihood.

b) True or False: θ̂ is the true parameter and θ is our estimate.

False: It is the other way around. Remember to switch to θ̂ when you set your equation to zero!

c) True or False: An estimator is unbiased if Biaspθ̂, θq “ Erθ̂s ´ θ = 0 or equivalently Erθ̂s “ θ

True by definition of

d) You flip a coin 10 times and observe HHHTHHTHHH (8 heads, 2 tails). What is the MLE of θ, where θ is
the true probability of seeing tails?
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θ̂ “ .2

θ̂ “ .25

θ̂ “ .8

θ̂ “ .3

Option 1: θ̂ “ .2

Task 2 – Mystery Dish!

A fancy new restaurant has opened up that features only 4 dishes. The unique feature of dining here is that they
will serve you any of the four dishes randomly according to the following probability distribution: give dish A with
probability 0.5, dish B with probability θ, dish C with probability 2θ, and dish D with probability 0.5 ´ 3θ. Each
diner is served a dish independently. Let xA be the number of people who received dish A, xB the number of
people who received dish B, etc, where xA ` xB ` xC ` xD “ n. Find the MLE θ̂ for θ.

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter θ. Because each diner is assigned a dish
independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:

Lpx; θq “

n
ź

i“1

P pxi; θq “ 0.5xAθxB p2θqxC p0.5 ´ 3θqxD

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it
equal to 0, and solve for θ̂.

lnLpx; θq “ xA lnp0.5q ` xB lnpθq ` xC lnp2θq ` xD lnp0.5 ´ 3θq

d

dθ
lnLpx; θq “

xB

θ
`

xC

θ
´

3xD

0.5 ´ 3θ

xB

θ̂
`

xC

θ̂
´

3xD

0.5 ´ 3θ̂
“ 0

Solving yields θ̂ “ xB`xC

6pxB`xC`xDq
.

Task 3 – A Red Poisson

Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. In other
words, they follow the distributions Ppk; θq “ θke´θ{k!, where k P N and θ ą 0 is a positive real number.

Find the MLE of θ.

We follow the recipe given in class:
First define likelihood. Then compute the natural log of that likelihood. Then get the derivative of
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the log. Finally set it to 0 and solve for θ̂.

Lpx1, . . . , xn ; θq “

n
ź

i“1

e´θ θ
xi

xi!

lnLpx1, . . . , xn ; θq “

n
ÿ

i“1

r´θ ´ lnpxi!q ` xi lnpθqs

d

dθ
lnLpx1, . . . , xn ; θq “

n
ÿ

i“1

”

´1 `
xi

θ

ı

0 “

n
ÿ

i“1

„

´1 `
xi

θ̂

ȷ

0 “ ´n `
Σn

i“1xi

θ̂

θ̂ “
Σn

i“1xi

n

Task 4 – A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ2 of a normal distribution (when both
the true mean µ and true variance σ2 are unknown) is what’s called the population variance. That is

θ̂2 “

˜

1

n

n
ÿ

i“1

pxi ´ θ̂1q2q

¸

where θ̂1 “ 1
n

řn
i“1 xi is the MLE of the mean. Is θ̂2 unbiased?

By the definition of an unbiased estimator, θ̂2 is an unbiased estimator of σ2 iff Erθ̂2s “ σ2.
Let X “ 1

n

řn
i“1 Xi. Then

E
”

θ̂2

ı

“ E

«

1

n

n
ÿ

i“1

pXi ´ Xq2

ff

“ E

«

1

n

n
ÿ

i“1

pX2
i ´ 2XiX ` X

2
q

ff

which by linearity of expectation (and distributing the sum) is

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E

«

2

n
X

n
ÿ

i“1

Xi

ff

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ 2E

«

X
1

n

n
ÿ

i“1

Xi

ff

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ 2E
”

X
2
ı

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E
”

X
2
ı

. p˚˚q

We know that for any random variable Y , since Var pY q “ E
“

Y 2
‰

´ pE rY sq2 it holds that

E
“

Y 2
‰

“ Var pY q ` pE rY sq2.
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Also, we have E rXis “ µ, Var pXiq “ σ2 @i and E
“

X
‰

“ µ, Var
`

X
˘

“ σ2

n . Combining these facts,
we get

E
“

X2
i

‰

“ σ2 ` µ2 @i and E
”

X
2
ı

“
σ2

n
` µ2.

Substituting these equations into (**) we get

E

«

1

n

n
ÿ

i“1

pXi ´ Xq2q

ff

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E
”

X
2
ı

“ σ2 ` µ2 ´

ˆ

σ2

n
` µ2

˙

“

ˆ

1 ´
1

n

˙

σ2.

Thus θ̂2 is not unbiased.

Task 5 – Weather Forecast

A weather forecaster predicts sun with probability θ1, clouds with probability θ2 ´ θ1, rain with probability 1
2 and

snow with probability 1
2 ´ θ2. This year, there have been 55 sunny days, 100 cloudy days, 160 rainy days and 50

snowy days. What is the maximum likelihood estimator for θ1 and θ2?

We want to find the likelihood of the data samples given the parameters θ1 and θ2. To do this, we
take the following product over all the data points.

Lpx1, ..., x365; θ1, θ2q “ θ551 pθ2 ´ θ1q100
ˆ

1

2

˙160 ˆ

1

2
´ θ2

˙50

Then, we use this to determine the log likelihood.

lnLpx1, ..., x365; θ1, θ2q “ lnpθ551 pθ2 ´ θ1q100
ˆ

1

2

˙160 ˆ

1

2
´ θ2

˙50

q

“ ln θ551 ` lnpθ2 ´ θ1q100 ` ln

ˆ

1

2

˙160

` ln

ˆ

1

2
´ θ2

˙50

“ 55 ln θ1 ` 100 lnpθ2 ´ θ1q ` 160 ln

ˆ

1

2

˙

` 50 ln

ˆ

1

2
´ θ2

˙

Then, we take the derivative of the log likelihood with respect to θ1.

B

Bθ1
lnLpx1, ..., x365; θ1, θ2q “

55

θ1
´

100

θ2 ´ θ1

Setting this equal to 0, we solve for θ̂1:

55

θ̂1
´

100

θ̂2 ´ θ̂1
“ 0

55pθ̂2 ´ θ̂1q ´ 100 θ̂1 “ 0

55 θ̂2 “ 155 θ̂1

θ̂1 “
11

31
θ̂2
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Then, we take the derivative of the log likelihood with respect to θ2.

B

Bθ2
lnLpx1, ..., x365; θ1, θ2q “

100

θ2 ´ θ1
´

50
1
2 ´ θ2

Setting this equal to 0, we solve for θ̂2:

100

θ̂2 ´ θ̂1
´

50
1
2 ´ θ̂2

“ 0

100

ˆ

1

2
´ θ̂2

˙

´ 50 pθ̂2 ´ θ̂1q “ 0

50 ´ 150 θ̂2 ` 50 θ̂1 “ 0

θ̂2 “
θ̂1 ` 1

3

We can now solve the simultaneous equations we have for θ1 and θ2 to obtain the maximum likelihood
estimators for each parameter.

θ̂2 “
θ̂1 ` 1

3

Plugging in the equation for θ1, we find

θ̂2 “

11
31 θ̂2 ` 1

3

3 θ̂2 “
11

31
θ̂2 ` 1

93 θ̂2 “ 11 θ̂2 ` 31

θ̂2 “
31

82

Plugging in the value for θ2 into the equation for θ1,

θ̂1 “
11

31
¨
31

82
“

11

82

To confirm that this is in fact a maximum, we could do a second derivative test. We won’t ask you
do this for this multivariate case, but it would still be good to check!

Task 6 – Elections

Individuals in a certain country are voting in an election between 3 candidates: A, B and C. Suppose that each
person makes their choice independent of others and votes for candidate A with probability θ1, for candidate B
with probability θ2 and for candidate C with probability 1 ´ θ1 ´ θ2. (Thus, 0 ď θ1 ` θ2 ď 1.) The parameters
θ1, θ2 are unknown.

Let nA, nB , and nC be the number of votes for candidate A, B, and C, respectively. What are the maximum
likelihood estimates for θ1 and θ2 in terms of nA, nB , and nC?

(You don’t need to check second order conditions.)

6



The likelihood is
LpnA, nB , nC ; θ1, θ2q “ pθ1qnApθ2qnB p1 ´ θ1 ´ θ2qnC .

Therefore, the log-likelihood is

lnLpnA, nB , nC ; θ1, θ2q “ nA lnpθ1q ` nB lnpθ2q ` nC lnp1 ´ θ1 ´ θ2q .

We take the partial derivative of the log-likelihood with respect to θ1 and θ2, separately

B

Bθ1
lnLpnA, nB , nC ; θ1, θ2q “

nA

θ1
´

nC

1 ´ θ1 ´ θ2
B

Bθ2
lnLpnA, nB , nC ; θ1, θ2q “

nB

θ2
´

nC

1 ´ θ1 ´ θ2

Now, we set both partial derivatives to 0 and solve (here we replace θ1 and θ2 with θ̂1 and θ̂2,
respectively)

We now want to find the solutions θ̂1 and θ̂2 for the system of equations

nA

θ̂1
´

nC

1 ´ θ̂1 ´ θ̂2
“ 0 (1)

nB

θ̂2
´

nC

1 ´ θ̂1 ´ θ̂2
“ 0 (2)

We can use algebra to solve for θ̂1 and θ̂2: We observe that the second term is the same in both
equations (1) and (2) is the same so we obtain

nA

θ̂1
“

nB

θ̂2

or equivalently nA ¨ θ̂2 “ nB ¨ θ̂1. We also can multiply out the denominators in equation (1) to get

nC ¨ θ̂1 “ nA ¨ p1 ´ θ̂1 ´ θ̂2q “ nAp1 ´ θ̂1q ´ nA ¨ θ̂2 “ nA ¨ p1 ´ θ̂1q ´ nB ¨ θ̂1.

and rearrange the equation to get that

pnA ` nB ` nCq ¨ θ̂1 “ nA.

θ̂1 “
nA

nA ` nB ` nC

Furthermore θ̂2 “ nB

nA
¨ θ̂1 so

pnA ` nB ` nCq ¨ θ̂2 “ pnA ` nB ` nCqθ̂1
nB

nA
“ nA ¨

nB

nA
“ nB .

Therefore

θ̂1 “
nA

nA ` nB ` nC

θ̂2 “
nB

nA ` nB ` nC

Note, the likelihood expression used has no binomial/multinomial term since the samples are in a
particular order. Even if the samples didn’t have a specified order and a binomial term was included,
it would disappear when taking the derivative of the log likelihood.
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Task 7 – Continuous Law of Total Probability

Suppose that the time until server 1 crashes is X „ Exp(λ) and the time until server 2 crashes is independent,
with Y „ Exp(µ).
What is the probability that server 1 crashes before server 2?

We have X „ Exp(λ) and Y „ Exp(µ), and want to find P(X ă Y ). Let A be the event that
X ă Y . By the Law of Total Probability for Continuous Variables, using A as the event and Y as
the continuous random variable, we have

PpAq “

ż 8

´8

PpA|Y “ yqfY pyq dy

As Y „ Exp(µ), fY pyq = 0 for all y ă 0, so the integral is only nonzero over the range from 0 to 8,
so we have

PpAq “

ż 8

0

PpA|Y “ yqfY pyq dy

As A is the event that X ă Y , we know

PpA|Y “ yq “ PpX ă Y |Y “ yq “ PpX ă y|Y “ yq “ PpX ă yq

Note the last equality above is true since X,Y are independent so P pX ă y|Y “ yq “ P pX ă yq for
any y. Also note PpX ă yq = PpX ď yq as X is continuous. So,

PpAq “

ż 8

0

PpA|Y “ yqfY pyq dy “

ż 8

0

PpX ď yqfY pyq dy

Here, as X „ Exp(λ), we can plug in the CDF of Exp(λ) to get PpX ď yq, and as Y „ Exp(µ), we
can plug in the PDF of Exp(µ) to get fY pyq as follows:

PpAq “

ż 8

0

PpX ď yqfY pyq dy “

ż 8

0

p1 ´ e´λyqfY pyq dy “

ż 8

0

p1 ´ e´λyqµe´µy dy

We can simply evaluate the integral to finish the problem as follows:

PpAq “

ż 8

0

p1 ´ e´λyqµe´µy dy “

ż 8

0

µe´µy dy `

ż 8

0

p´e´λyqµe´µy dy

Let’s now evaluate each of the above integrals:

ż 8

0

µe´µy dy “ r´e´µys8
0 “ 0 ´ p´1q “ 1

ż 8

0

p´e´λyqµe´µy dy “ ´µ

ż 8

0

pe´pλ`µqyq dy “
´µ

λ ` µ
r´e´pλ`µqys8

0 “
´µ

λ ` µ
p0´ p´1qq “

´µ

λ ` µ

So, we can combine these results to get:

PpAq “

ż 8

0

µe´µy dy `

ż 8

0

p´e´λyqµe´µy dy “ 1 ´
µ

λ ` µ
“

λ

λ ` µ

So, as A is the event that X ă Y , our final answer is that the probability that server 1 crashes before
server 2 is λ

λ`µ .

Task 8 – Y Me?
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Let y1, y2, ...yn be i.i.d. samples of a random variable with density function

fY py ; θq “
1

2θ
exp

ˆ

´
|y|

θ

˙

.

Find the MLE for θ in terms of |yi| and n.

Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied
together. From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for
for θ̂.

Lpy1, . . . , yn ; θq “

n
ź

i“1

1

2θ
exp

ˆ

´
|yi|

θ

˙

lnL py1, . . . , yn | θq “

n
ÿ

i“1

„

´ ln 2 ´ ln θ ´
|yi|

θ

ȷ

B

Bθ
lnLpy1, . . . , yn ; θq “

n
ÿ

i“1

„

´
1

θ
`

|yi|

θ2

ȷ

n
ÿ

i“1

„

´
1

θ̂
`

|yi|

θ̂2

ȷ

“ 0

´
n

θ̂
`

Σn
i“1|yi|

θ̂2
“ 0

θ̂ “
Σn

i“1|yi|

n

Task 9 – Elevator rides

[This is the problem we did in class.] The number X of people who enter an elevator on the ground floor is a
Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally
likely to get off at any one of the N floors, independently of where others get off, compute the expected number
of stops the elevator will make before discharging all the passengers.

Let S be the number of stops the elevator makes, and X „ Poip10q. We shall calculate ErSs.
By the law of total expectation, partitioning on the value of X, we have

ErSs “

8
ÿ

i“0

ErS|X “ isP pX “ iq

By the definition of Poison distribution, we know

P pX “ iq “ e´10 10
i

i!

To calculate ErS|X “ is, let S “ Y1 ` Y2 ` ... ` YN , where

Yj “

#

1 if someone gets off at the jth floor

0 otherwise

Then, by the linearity of conditional expectation, we have

ErS|X “ is “ ErY1 ` Y2 ` ... ` YN |X “ is “

N
ÿ

j“1

ErYj |X “ is “

N
ÿ

j“1

P pYj “ 1|X “ iq
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To figure out P pYj “ 1|X “ iq, it would be more convenient to find its complement, P pYj “ 0|X “ iq,
which represents the probability that nobody gets off at jth floor. Since each person is equally likely
to get off at any one of N floor, we know P pYj “ 0|X “ iq “ pN´1

N qi. Thus, we have

ErS|X “ is “

N
ÿ

j“1

P pYj “ 1|X “ iq “

N
ÿ

j“1

1 ´ P pYj “ 0|X “ iq “

N
ÿ

j“1

1 ´ p
N ´ 1

N
qi

Finally, we find

ErSs “

8
ÿ

i“0

ErS|X “ isP pX “ iq “

8
ÿ

i“0

˜

N
ÿ

j“1

1 ´ p
N ´ 1

N
qi

¸

e´10 10
i

i!
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