CSE 312: Foundations of Computing Il Summer 2024
Section 8 — Solutions

Review

- Law of Total Probability (partition based on value of a r.v.): If X is a discrete random variable, then

P(A) = Y P(AX = o)px(x)

.’L‘EQX

If X is a continuous random variable, then

P(4) = fo B(AIX = o) fx(z) da

—0Q0
- Conditional Expectation: Let X and Y be random variables. Then, the conditional expectation of X given
Y=yis
EX|[Y =y]= >, z-P(X =2[Y =y) X discrete

IEQX

and for any event A,
E[X|A] = ) = P(X =z]A) X discrete

:EESZX

Note that linearity of expectation still applies to conditional expectation: E[X + Y|A] = E[X|A] + E[Y|A4]

- Law of Total Expectation (Event Version): Let X be a random variable, and let events Ay, ..., A, partition
the sample space. Then,

E[X] = ) E[X|A]P(4;)
i=1

- Law of Total Expectation (RV Version): Suppose X and Y are random variables. Then,

E[X] =Y E[X|Y =ylpy(y) Y discrete r.v..

E[X] = Jm E[X|Y = y]fy(y)dy Y continuous r.v.

—0o0

Maximum Likelihood Estimation
1) Realization/Sample: A realization/sample z of a random variable X is the value that is actually observed.

2) Likelihood: Let x1,...x, be iid realizations from probability mass function px (x ;) (if X discrete) or
density fx(x;8) (if X continuous), where 6 is a parameter (or a vector of parameters). We define the
likelihood function to be the probability of seeing the data.

If X is discrete: n
L(zy,...,2, ; 0) = pr(xi ; 0)
i=1

If X is continuous:

L(x1,...,2n 5 0) = nfx(ﬂﬁi ; 0)
im1



3) Maximum Likelihood Estimator (MLE): We denote the MLE of 6 as Oy or simply 0, the parameter
(or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

Ovie = argmeaXL(xl,...,xn ; 0) = argmeaxlnL(xl,...,mn ; 6)

4) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the
logarithm is a strictly increasing function, the value of # that maximizes the likelihood will be exactly the
same as the value that maximizes the log-likelihood.

If X is discrete: .
InL(zy,...,2,; 0) = Z Inpx(z; ; 6)
i=1

If X is continuous: .
InL(zy,...,xn; 6) = Zlnfx(mi ; 0)
i=1

5) Steps to find the maximum likelihood estimator, 0:

(a) Find the likelihood and log-likelihood of the data.

(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, 6.
(c) Take the second derivative and show that # indeed is a maximizer, that ’i;% < 0 at §. Also ensure
that it is the global maximizer: check points of non-differentiability and boundary values.

(d) If we are finding the MLE for a set of parameters, then we set up the system of equations obtained by
taking the partial derivative of the log-likelihood function with respect to each of the parameters and
setting it equal to 0. We then solve this system to get the MLEs. (And again, second order conditions
need to be checked.)

6) An estimator d for a parameter 6 of a probability distribution is unbiased iff E[d(X1,..., X,)] = 6

Task 1 — Content Review

a) True or False: The Log-Likelihood gives a slightly different estimate, but because it is close enough and
easier to compute we use it for our estimate of 6.

False: Since the logarithm is a strictly increasing function, the value of 6 that maximizes the
likelihood will be exactly the same as the value that maximizes the log-likelihood.

b) True or False: 0 is the true parameter and 6 is our estimate.
False: It is the other way around. Remember to switch to 0 when you set your equation to zero!
c) True or False: An estimator is unbiased if Bias(d,0) = E[A] — 6 = 0 or equivalently E[d] = 0

True by definition of

d) You flip a coin 10 times and observe HHHTHHTHHH (8 heads, 2 tails). What is the MLE of 6, where 6 is
the true probability of seeing tails?
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Option 1: 6 = .2

Task 2 — Mystery Dish!

A fancy new restaurant has opened up that features only 4 dishes. The unique feature of dining here is that they
will serve you any of the four dishes randomly according to the following probability distribution: give dish A with
probability 0.5, dish B with probability 8, dish C with probability 26, and dish D with probability 0.5 — 30. Each
diner is served a dish independently. Let x4 be the number of people who received dish A, zp the number of
people who received dish B, etc, where x4 + x5 + ¢ + £p = n. Find the MLE 0 for 0.

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter #. Because each diner is assigned a dish
independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:

L(2:0) = [ [ P(ais6) = 05675 (26)° (0.5 - 36)"”
i=1

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it
equal to 0, and solve for 6.

In L£(z;0) = x4 1n(0.5) + 2 In(0) + 2 In(20) + xp In(0.5 — 30)

rp W ite 3:L’D

9 "9 05-30

d
T In L(z;0) =

rptrc

SOlVing y|e|ds é = m

Task 3 — A Red Poisson

Suppose that z1,...,x, are i.i.d. samples from a Poisson(f) random variable, where 8 is unknown. In other
words, they follow the distributions P(k;#) = 6%e~%/k!, where k € N and § > 0 is a positive real number.

Find the MLE of 6.

We follow the recipe given in class:
First define likelihood. Then compute the natural log of that likelihood. Then get the derivative of



the log. Finally set it to 0 and solve for 0.

L(x1,...,20; 0) = 1_[6799%

i1 Tz'
InL(xy,...,2,; 0) = Z [0 — In(z;!) + x; In(0)]
i=1
d n :Z;‘Z
L@y w0 = izl[—uﬂ
0 = [—1 + T]
i=1
»n
0 = —p+ 2=t
é _ 21”:1.1'1
n

Task 4 — A biased estimator

In class, we showed that the maximum likelihood estimate of the variance 6 of a normal distribution (when both
the true mean  and true variance o2 are unknown) is what's called the population variance. That is

R 1& .
0y = <— D (@i — 91)2)>
nia
where 0, = L3 @ is the MLE of the mean. Is 0, unbiased?

By the definition of an unbiased estimator, 05 is an unbiased estimator of o2 iff E[f,] = o2,

Let X = 137" | X;. Then

E [ég] —E [i DX X)Ql -E li g(xf - 2X¢X+X2)1

Ci=1

which by linearity of expectation (and distributing the sum) is

_i;ZLlE[Xﬂ_E[X y X] +E[X7]

3

—:LiE[Xﬂ—QElX
:%i[@[}(?]—zﬂz[f] +E[X’]

ii E[X}]-E[X°|. (=)

We know that for any random variable Y, since Var (Y) = E [Y2] — (E[Y])? it holds that

E[Y?] = Var(Y) + (E[Y])*



Also, we have E[X;] = u, Var(X;) = ¢ Vi and E[X]| = p, Var (X) = %2 Combining these facts,
we get

E[X?] = 0%+ p® Vi and JE[YQ]:%HLQ-

K2

Substituting these equations into (**) we get

E[;i(Xi_X)Q)] =%iE[X?]—E[Y2] — 0% 4 - (fjﬂﬂ)

i=1

Thus 5 is not unbiased.

Task 5 — Weather Forecast

A weather forecaster predicts sun with probability 61, clouds with probability 83 — 61, rain with probability % and
snow with probability % — 5. This year, there have been 55 sunny days, 100 cloudy days, 160 rainy days and 50
snowy days. What is the maximum likelihood estimator for #; and 657

We want to find the likelihood of the data samples given the parameters 6, and 5. To do this, we
take the following product over all the data points.

1\160 /4 50
L(x1, ..., w365; 01, 02) = 07° (62 — 01)' (2> (2 _ 92)

Then, we use this to determine the log likelihood.

1\ 160 50
In L(21, ..., x365; 01, 02) = In(67° (62 — 61)'"° <) ( - 92) )

2
1\ 160 1 50
=67 +In(0; — 61)"" +In <2> o <2 - 92)
1 1
=55In6; +1001n(fy — 6;) + 1601n 3 + 501n 5~ )

Then, we take the derivative of the log likelihood with respect to 6;.

0 55 100
— InL 5;9 ,(9 = —
20, nL(xy, ..., 3655 01, 02) 0 0,— 0,
Setting this equal to 0, we solve for 0,
55 1
To o OOA _0
0, 0, —0

55(6y — 1) — 100 61 = 0

55 0y = 155 0,
N 11 -
=— 0
O =37 02



Then, we take the derivative of the log likelihood with respect to 05.

0 100 50
InL(xq, ... 101,05) = -
692 n ('rl, , L3655 U1, 2) 02 — 91 % — 62
Setting this equal to 0, we solve for 0y
100 50
—— 7= =0
b —01 5 — 0

1 ~ ~ ~
100 (2 —92) —50 (6, —61) =0

50 — 150 65 + 50 61 = 0

< f+1
0y = 13

We can now solve the simultaneous equations we have for #; and > to obtain the maximum likelihood
estimators for each parameter.

- 6 +1
0, = 13
Plugging in the equation for 67, we find
11 4
OAQ _ ﬁ 02 + 1
3
o 11 -~
30=—10,+1
SEETRC
93 62 = 11 6 + 31
N 31
0, = 2=
T 82

Plugging in the value for 65 into the equation for 61,

g3 1
173182 82

To confirm that this is in fact a maximum, we could do a second derivative test. We won't ask you
do this for this multivariate case, but it would still be good to check!

Task 6 — Elections

Individuals in a certain country are voting in an election between 3 candidates: A, B and C. Suppose that each
person makes their choice independent of others and votes for candidate A with probability 81, for candidate B
with probability 65 and for candidate C with probability 1 — 61 — 2. (Thus, 0 < 61 + 02 < 1.) The parameters
01,0 are unknown.

Let n 4, npg, and nc be the number of votes for candidate A, B, and C, respectively. What are the maximum
likelihood estimates for 6; and 05 in terms of n4,npg, and ne?

(You don’t need to check second order conditions.)



The likelihood is
E(nA,nB,nc ] 91, 92) = (91)”“ (92)”3(1 — 91 — 92)"0 .

Therefore, the log-likelihood is

InL(na,ng,nc;601,02) =naln(0y) + ngIn(0s) + neln(l — 6, — 0s) .

We take the partial derivative of the log-likelihood with respect to #; and 65, separately

na nc
1 . = - —
w0 nL(na,np,nc;bh,00) 0, 1—0, 0,
np nc
1 . = -
0 nL(na,np,nc;bh,0s) Oy 1—0, — 0,

Now, we set both partial derivatives to 0 and solve (here we replace 0; and 65 with él and ég,
respectively)

We now want to find the solutions #; and 65 for the system of equations

91 1—01—92
o= (2)

by 1—0—0,

We can use algebra to solve for 91 and égi We observe that the second term is the same in both
equations (1) and (2) is the same so we obtain

or equivalently n 4 - 0y = ng - 0;. We also can multiply out the denominators in equation (1) to get
TLC'él =nA~(179A179A2) =nA(179A1)7TLA~0A2 =nA-(lfé1)an-9A1.
and rearrange the equation to get that

(nA+nB+nc)~é1 =nNaAa.

6, = A
na+npg+nc

Furthermore ég = 2B ~é1 )

naA
~ ~ Np np
(na+np+nc) -2 =(na+np+nc)li— =ns- — =np.
na na
Therefore
N n
b, — — A
na+np+ne
~ np
g =
ng+np+nec

Note, the likelihood expression used has no binomial/multinomial term since the samples are in a
particular order. Even if the samples didn't have a specified order and a binomial term was included,
it would disappear when taking the derivative of the log likelihood.



Task 7 — Continuous Law of Total Probability

Suppose that the time until server 1 crashes is X ~ Exp()\) and the time until server 2 crashes is independent,
with Y ~ Exp(pu).
What is the probability that server 1 crashes before server 27

We have X ~ Exp()A) and Y ~ Exp(u), and want to find P(X < Y). Let A be the event that
X < Y. By the Law of Total Probability for Continuous Variables, using A as the event and Y as
the continuous random variable, we have

0

PA) = [ BAIY = )fr () dy
—00
AsY ~ Exp(u), fy(y) = 0 for all y < 0, so the integral is only nonzero over the range from 0 to oo,
so we have .
P(A) = | BAIY =) fy () dy
0
As A is the event that X <Y, we know

PAY =y) =P(X <Y|Y =y) =P(X <y|Y =y) =P(X <y)

Note the last equality above is true since X,Y are independent so P(X < y|Y =vy) = P(X < y) for
any y. Also note P(X < y) = P(X < y) as X is continuous. So,

o0

o0
P(A) = [ BAIY =) fr(o) dy = | BOC< ) fr() dy
0 0
Here, as X ~ Exp(A), we can plug in the CDF of Exp()\) to get P(X < y), and as Y ~ Exp(u), we
can plug in the PDF of Exp(u) to get fy (y) as follows:

o0 0

(1—e ™) fy(y) dy = J (1— e M)ue ™ dy
0

b = [ B < = |

0 0

We can simply evaluate the integral to finish the problem as follows:

0 a0 Q0
P(A) = j (1 —e M)ue ™™ dy = J pe MY dy + f (—e ™ M)pue ™™ dy
0 0 0

Let's now evaluate each of the above integrals:

0
| e ay = - 0 - (-p -1

0
© 0 —u —p —H
Jo (e )pe " dy = *ML (emOHiy) dy = m[*ef(/\wm]?}o = m(O* (1)) = Ntp
So, we can combine these results to get:
0 - 0 . - 1 )\
P(A) :L pe 1Y dy—&-L (—e " Mue ™ dy = 1_7>\+/~L = 7)\+M

So, as A is the event that X < Y, our final answer is that the probability that server 1 crashes before
server 2 is ﬁ

Task 8 — Y Me?




Let y1, 92, ...yn be i.i.d. samples of a random variable with density function

Find the MLE for 6 in terms of |y;| and n.

Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied
togeAther. From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for

for 6.
Llyi,....yn: 0) = Il:lexp<%>
iy 20 0
R o NN [
InL(yi,..., yn | 0) = In2 —1In6 J
=1
‘ N 1 |y
—InL(yq,..., ni0) = I L
20 Ly 0) 1_1[9+92]
n 1 ;
Lo 0
I 1y
0 92
0 = Byl
n

Task 9 — Elevator rides

[This is the problem we did in class.] The number X of people who enter an elevator on the ground floor is a
Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally
likely to get off at any one of the IV floors, independently of where others get off, compute the expected number
of stops the elevator will make before discharging all the passengers.

Let S be the number of stops the elevator makes, and X ~ Poi(10). We shall calculate E[S].
By the law of total expectation, partitioning on the value of X, we have

E[S] = Z E[S|X =i]P(X =)

By the definition of Poison distribution, we know

10
o —10
P(X=i)=e f
To calculate E[S|X =], let S =Y] + Y5 + ... + Y, where

sth

v — {1 if someone gets off at the j*" floor

/ 0 otherwise

Then, by the linearity of conditional expectation, we have

N N
E[S|X =i] = EY1 + Yo+ .. + Yn|X =i] = D E[Y;|X =i] = D P(Y; = 1|X =)

j=1 j=1



To figure out P (Y; = 1|X = i), it would be more convenient to find its complement, P (Y; = 0|X = i),
which represents the probability that nobody gets off at j* floor. Since each person is equaIIy likely
to get off at any one of IV floor, we know P (Y; = 0|X =) = (22)%. Thus, we have

N N N -
BISIX =i]= Y P(Y;=1X =i)= > 1-P(Y; =0|X =i) = Y 1 — (——

j=1 j=1 j=1

Finally, we find

10



