
CSE 312: Foundations of Computing II Winter 2024

Section 8: Review – Solutions

Task 1 – True or False?

a) True or False: The probability of getting 20 heads in 100 independent tosses of a coin that has probability
5/6 of coming up heads is p5{6q20p1{6q80.

False. It is
`

100
20

˘

p5{6q20p1{6q80. We need to account for the different orderings of the heads and
the tails.

b) True or False: Suppose we roll a six-sided fair die twice independently. Then the event that the first roll is
3 and the sum of the two rolls is 6 are independent.

False. Let X1 and X2 be random variables that represent the values of the first and second rolls,
respectively. P pX1 “ 3q “ 1

6 . However, P pX1 “ 3 | X1 `X2 “ 6q “ 1
5

c) True or False: If X and Y are nonnegative, discrete, and independent random variables, then so are X2 and
Y 2.

True. X2 and Y 2 are independent if PpX2 “ x, Y 2 “ yq “ PpX2 “ xqPpY 2 “ yq.

PpX2 “ x, Y 2 “ yq “ PpX “
?
x, Y “

?
yq and since X and Y are independent:

PpX “
?
x, Y “

?
yq “ PpX “

?
xqPpY “

?
yq “ PpX2 “ xqPpY 2 “ yq Thus, X2 and Y 2 are

independent.

d) True or False: The central limit theorem requires the random variables to be independent.

True. The central limit theorem requires the random variables to be i.i.d.

e) True or False: Let A, B and C be any three events defined with respect to a probability space. Then
PpAXB X Cq “ PpAXB|CqPpB|CqPpCq.

False. Suppose A, B, and C are all mutually independent, then

PpAXB X Cq “ PpAq PpBq PpCq “ PpAq PpBq PpBq PpCq “ PpAXB | CqPpB | CqPpCq

In general, one correct way to apply the chain rule (twice) would be

PpAXB X Cq “ PpA | B X CqPpB X Cq “ PpA | B X CqPpB | CqPpCq

f) True or False: If you flip a fair coin 1000 times, then the probability that there are 800 heads in total is the
same as the probability that there are 80 heads in the first 100 flips.
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False. Let X be the number of heads in 1000 flips of a fair coin, and Let Y be the number of heads
in 100 flips of a fair coin.

PpX “ 800q “

ˆ

1000

800

˙

0.51000 “ 6.17 ¨ 10´86 “ 4.22 ¨ 10´10 “

ˆ

100

80

˙

0.5100

g) True or False: If N is a nonnegative integer valued random variable, then

E
„ˆ

N

2

˙ȷ

“

ˆ

ErN s
2

˙

.

False. The left-hand side is

Er
ˆ

N

2

˙

s “ Er
N !

pN ´ 2q! 2!
s “

1

2
ErN2 ´N s “

1

2

`

ErN2s ´ ErN s
˘

while the right-hand side is

ˆ

ErN s
2

˙

“
ErN s!

pErN s ´ 2q! 2!
“

1

2

`

ErN s2 ´ ErN s
˘

and in general these equations are not equal because ErN2s “ ErN s2

Task 2 – Short answer

a) Consider a set S containing k distinct integers. What is the smallest k for which S is guaranteed to have 3
numbers that are the same mod 5 (in other words, for every pair of elements a and b in the set S, a mod
5 “ b mod 5)?

k “ 11. This is because modding any number by 5 yields 5 possible integers (i.e. slots). When
distributing 11 numbers between these five slots, by pigeonhole principle, one slot must correspond
to at least 3 integers mod 5.

b) Let X be a discrete random variable that can only be between -10 and 10. That is, P pX “ xq ě 0 for
´10 ď x ď 10, and P pX “ xq “ 0 otherwise. What is the smallest possible value the variance of X can
take?

0. This is because V arpXq ě 0 and we can define the probability mass function in a way makes
V arpXq “ 0, as long as the support of X lies between -10 and 10. For example, we can define a
PMF pXpxq “ 1 if x “ 7 and 0 otherwise. Then we have

V arpXq “ ErX2s ´ ErXs2 “ 72 ´ 72 “ 0

c) How many ways are there to rearrange the letters in the word KNICKKNACK?

10!
4! 2! 2! . Permute all 10 letters as if distinct, then divide by 4! to account for over counting the
Ks; divide by 2! to account for over counting the Cs; and divide by 2! again to account for over
counting the Ns.

d) I toss n balls into n bins uniformly at random. What is the expected number of bins with exactly k balls in
them?
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Let X be the number of bins with k balls in them. Let Xi be 1 if the ith bin has exactly k balls in
it, and 0 otherwise. Note that X “

řn
i“1 Xi. Since balls are distributed uniformly at random, the

probability that a particular ball lands in a particular bin is 1{n. Thus, the probability that k balls

land in the ith bin is
`

n
k

˘ `

1
n

˘k `

n´1
n

˘n´k
. By linearity of expectation we have

ErXs “
n

ÿ

i“1

ErXis “

n
ÿ

i“1

PpXi “ 1q “
n

ÿ

i“1

ˆ

n

k

˙ ˆ

1

n

˙k ˆ

n´ 1

n

˙n´k

“ n

ˆ

n

k

˙ ˆ

1

n

˙k ˆ

n´ 1

n

˙n´k

e) What is the coefficient of x6 in the expansion of p3x2 ` yq5?

ADD SOLUTION

f) Suppose I give you a list of 20 possible questions and tell you that a random subset of 8 of them will be on
the upcoming test. If you memorize answers to 15 of them and have no clue how to answer the remaining 5,
what is the probability that you will get 6 of the 8 questions on the test right?

To solve this, we use the hypergeometric distribution, which describes the probability of k successes
in n draws without replacement from a finite population of size N containing K successes.

Here, N “ 20, K “ 15, n “ 8, and k “ 6. The hypergeometric probability formula is:

P pX “ kq “

`

K
k

˘`

N´K
n´k

˘

`

N
n

˘

Plugging in the values:

P pX “ 6q “

`

15
6

˘`

5
2

˘

`

20
8

˘

g) Consider a six-sided die where Prp1q “ Prp2q “ Prp3q “ Prp4q “ 1{8 and Prp5q “ Prp6q “ 1{4. Let X
be the random variable which is the square root of the value showing. (For example, if the die shows a 1, X
is 1, if the die shows a 2, X is

?
2, if the die shows a 3, X “

?
3 and so on.) What is the expected value of

X? (Leave your answer in the form of a numerical sum; do not bother simplifying it.)

By the definition of expectation

ErXs “
6

ÿ

x“1

?
x Ppxq

h) What is the conditional probability that a random 5-card poker hand is a 4 of a kind (i.e. contains 4 cards of
1 rank and 1 card of a different rank) given that it contains at least one pair?

Let F be the event that a poker hand is a 4 of a kind. Let E be the event that it contains at least
one pair. Let Ω be all possible poker hands.

PpF | Eq “
|F X E|

|E|
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i) Let X be a random variable with probability density function

fXpxq “

#

x{4 if 1 ď x ď 3

0 otherwise,

Write down an integral expression for EplogpXqq? (You do not need to evaluate the integral or simplify your
answer.)

j) A bus route has interarrival times (the times between subsequent arrivals) at a bus stop that are exponentially
distributed with parameter λ “ 0.05

min . What is the probability of waiting an hour or more for a bus?

Let X be an RV representing wait time, distributed according to Expp0.05q

PpX ą 60q “ 1´ FXp60q “ 1´ p1´ e´0.05¨60q « 0.0498

k) Suppose the random variable X has a normal distribution with mean 9 and variance 49. What is the probability
that X takes on a value of at least 23?

l) Suppose the random variable X has a normal distribution with mean 9 and variance 49 and that Y is an
independent random variable that is normal with mean 1 and variance 9. What kind of random variable is
Z “ 2X ´ 3Y ? What is the mean and variance of Z?

m) The time required for a disk access is modeled using a uniform distribution over the interval 3.5 to 5.5
milliseconds. What is the probability that a randomly selected disk access takes more than 4 milliseconds?

n) If random variable X has expected value 3 and variance 2, what is EpX2q?

o) A certain department offers 8 different lower-level courses, and 10 different higher level courses. A valid
curriculum consists of 5 lower level courses and 3 higher level courses. What is the probability that a random
selection of 8 courses is valid?

p) What is the coefficient of x3 in p4x´ 8q8?

q) What is the minimum number of people for which, no matter when they were born, we are guaranteed that
at least 3 of them were born in the same month?

r) How many different ways are there to select 3 dozen indistinguishable colored roses if red, yellow, pink, white,
purple and orange roses are available?

This is a stars and bars problem. In this case there are 36 stars and 5 bars. So there are
`

41
5

˘

ways
to select 3 dozen roses.

s) Two identical 52-card decks are mixed together. How many distinct permutations of the 104 cards are there?

Perform the permutation as if it were 104 distinct items, and divide out the duplicates (each pair
has 2! excess orderings, and there are 52 pairs), to get:

104!

p2!q52
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Task 3 – Random boolean formulas

Consider a boolean formula on n variables in 3-CNF, that is, conjunctive normal form with 3 literals per clause.
This means that it is an “and” of “ors”, where each “or” has 3 literals. Each parenthesized expression (i.e., each
“or” of three literals) is called a clause. Here is an example of a boolean formula in 3-CNF, with n “ 6 variables
and m “ 4 clauses.

px1 _ x3 _ x5q ^ p␣x1 _␣x2 _ x6q ^ px5 _␣x3 _ x4q ^ p␣x1 _ x4 _ x5q.

a) What is the probability that p␣x1 _␣x2 _ x3q evaluates to true if variable xi is set to true with probability
pi, independently for all i?

p␣x1 _ ␣x2 _ x3q is true when at least one of the following holds: x1 “ false, x2 “ false,
x3 “ true. So we can write

Ppp␣x1 _␣x2 _ x3q “ trueq “ Ppx1 “ falseY x2 “ falseY x3 “ trueq

“ 1´ Ppx1 “ trueX x2 “ trueX x3 “ falseq rComplementary probabilitys

“ 1´ Ppx1 “ trueqPpx2 “ trueqPpx3 “ falseq rIndependences

“ 1´ p1 ¨ p2 ¨ p1´ p3q

b) Consider a boolean formula in 3-CNF with n variables and m clauses, where the three literals in each clause
refer to distinct variables. What is the expected number of satisfied clauses if each variable is set to true
independently with probability 1/2? A clause is satisfied if it evaluates to true. (In the displayed example
above, if x1, . . . , x5 are set to true and x6 is set to false, then all clauses but the second are satisfied.)

Let X be a random variable that represents the total number of satisfied clauses. Let Xi be a
random variable that is 1 if the ith clause is satisfied, and otherwise 0. Note that X “

řm
i“1 Xi.

The PpXi “ 1q “ 1´ 0.53. This is because the ith clause is true when at least one of its disjuncts
evaluates to true. As discussed in the previous part, this is equivalent to not all disjuncts evaluating
to false. The probability that an individual disjuncts evaluates to false is 0.5, and because each
conjuncts truth value is independent of the others, the probability that they are all false is 0.53.
Using the complementary probability rule, we get PpXi “ 1q “ 1´0.53. By linearity of expectation

ErXs “
m
ÿ

i“1

ErXis “

m
ÿ

i“1

PpXi “ 1q “
m
ÿ

i“1

p1´ 0.53q “ m
`

1´ 0.53
˘

Task 4 – Biased coin flips

We flip a biased coin with probability p of getting heads until we either get heads or we flip the coin three times.
Thus, the possible outcomes of this random experiment are ă H ą,ă T,H ą,ă T, T,H ą and ă T, T, T ą.

a) What is the probability mass function of X, where X is the number of heads. (Notice that X is 1 for the first
three outcomes, and 0 in the last outcome.)

Let E be an event that represents the outcome of our experiment. Note that E can take on four
possible outcomes, however, they do not occur with equal probability.

PpX “ 0q “ PpE “ă T, T, T ąq

“ p1´ pq3 rIndependent flipss

5



And

PpX “ 1q “ 1´ PpX “ 0q rComplementings

“ 1´ p1´ pq3

Thus,

pXpxq “

$

’

&

’

%

p1´ pq3, x “ 0

1´ p1´ pq3, x “ 1

0, otherwise

Alternatively, we can calculate PpX “ 1q as

PpX “ 1q “ PpE “ă H ą Y E “ă T,H ą Y E “ă T, T,H ąq

“ PpE “ă H ąq ` PpE “ă T,H ąq ` PpE “ă T, T,H ąq rDisjoint eventss

“ p` p1´ pqp` p1´ pq2p rIndependent flipss

Thus,

pXpxq “

$

’

&

’

%

p1´ pq3, x “ 0

p` p1´ pqp` p1´ pq2p, x “ 1

0, otherwise

b) What is the probability that the coin is flipped more than once?

The coin is flipped more than once if E is any of the last three outcomes. This is equivalent to E
not being the first outcome. This occurs with probability 1´ PpE “ă H ąq “ 1´ p.

c) Are the events “there is a second flip and it is heads” and “there is a third flip and it is heads” independent?
Justify your answer.

The event “there is a second flip and it is heads” is independent from the event “there is a third
flip and it is heads” if and only if the following equation holds:

PpE “ă T,H ą| E “ă T, T,H ąq “ PpE “ă T,H ąq

The LHS is 0 because it is impossible to flip T,H if you’ve already flipped T, T,H, whereas the
RHS is p1´ pqp. Therefore, the events are not independent.

d) Given that we flipped more than once and ended up with heads, what is the probability that we got heads on
the second flip? (No need to simplify your answer.)

Given that we flipped more than once and ended up with heads means that

E “ă T,H ą Y E “ă T, T,H ą

Now, we are trying to find the following probability: PpE “ă T,H ą| pE “ă T,H ą Y E “ă T, T,H ąqq.
By the definition of conditional probability this is equal to

PpE “ă T,H ą XpE “ă T,H ą Y E “ă T, T,H ąqq

PpE “ă T,H ą Y E “ă T, T,H ąq
“

PpE “ă T,H ąq

PpE “ă T,H ą Y E “ă T, T,H ąq

“
p1´ pqp

p1´ pqp` p1´ pq2p

The first equality holds because E “ă T,H ą and E “ă T, T,H ą are disjoint events, and the
second equality holds from the probability values of the event E that we found in part (a).
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Task 5 – Bitcoin users

There is a population of n people. The number of Bitcoin users among these n people is i with probability
pi, where, of course,

ř

0ďiďn pi “ 1. We take a random sample of k people from the population (without
replacement). Use Bayes Theorem to derive an expression for the probability that there are i Bitcoin users in the
population conditioned on the fact that there are j Bitcoin users in the sample. Let Bi be the event that there
are i Bitcoin users in the population and let Sj be the event that there are j Bitcoin users in the sample. Your
answer should be written in terms of the pℓ’s, i, j, n and k. Your answer can contain summation notation.

PrpBi|Sjq “
PrpSj |BiqPrpBiq

PrpSjq
by Bayes Theorem

“

pijqp
n´i
k´jq

pnkq
¨ pi

řn
ℓ“0 PrpSj |BℓqPrpBℓq

“

pijqp
n´i
k´jq

pnkq
¨ pi

řn
ℓ“0

pℓjqp
n´ℓ
k´jq

pnkq
¨ pℓ

“

`

i
j

˘`

n´i
k´j

˘

¨ pi
řn

ℓ“0

`

ℓ
j

˘`

n´ℓ
k´j

˘

¨ pℓ
.

Above, we used the fact that PrpBℓq “ pℓ and the fact that PrpSj |Bℓq is the probability of choosing
a subset of size k, where j of the selected people are from the subset of ℓ Bitcoin users and k ´ j
are from the remaining n´ ℓ non-Bitcoin users. That is, PrpSj |Bℓq is the probability of drawing the
number j from a HyperGeometricpn, i, kq random variable.

Task 6 – Investments

You are considering three investments. Investment A yields a return which is X dollars where X is Poisson with
parameter 2. Investment B yields a return of Y dollars where Y is Geometric with parameter 1/2. Investment
C yields a return of Z dollars which is Binomial with parameters n “ 20 and p “ 0.1. The returns of the three
investments are independent.

a) Suppose you invest simultaneously in all three of these possible investments. What is the expected value and
the variance of your total return?

Let R be a random variable representing the total returns you get. If we invest in all of them
simultaneously, then R “ X ` Y ` Z. Then, ErRs “ ErX ` Y ` Zs “ ErXs ` ErY s ` ErZs by
linearity of expectation.

Since X is Poisson with parameter 2, ErXs “ 2. Y is Geometric with parameter 1
2 , so ErY s “

1
1{2 “ 2. Z is Binomial with parameters n “ 20 and p “ 0.1, so ErZs “ 20 ¨ 0.1 “ 2. Thus

ErRs “ 2 ` 2 ` 2 “ 6. These expected values are based on the respective formulas from the
distribution sheet.

V arpRq “ V arpX ` Y ` Zq “ V arpXq ` V arpY q ` V arpZq because the returns from all three
investments are independent. Because we know the distributions, we can read off their variances,

with V arpXq “ λ “ 2, V arpY q “ 1´p
p2 “

1{2
1{4 “ 2, V arpZq “ npp1´ pq “ 20 ¨ 0.1p0.9q “ 1.8.

Thus, V arpRq “ 2` 2` 1.8 “ 5.8

b) Suppose instead that you choose uniformly at random from among the 3 investments (i.e., you choose each
one with probability 1/3). Use the law of total probability to write an expression for the probability that the
return is 10 dollars. Your final expression should contain numbers only. No need to simplify your answer.
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Define events A,B, and C as randomly choosing Investments A, B, and C respectively. We want to
find PpR “ 10q. We can break this up with the Law of Total Probability as

PpR “ 10q “ PpR “ 10|Aqp
1

3
q ` PpR “ 10|Bqp

1

3
q ` PpR “ 10|Cqp

1

3
q

.

In each case, R “ X,Y, or Z respectively, so we can plug in the PMFs of each function (and distribute
out the 1

3 ):

PpR “ 10q “
1

3
pe´2 2

10

10!
` p0.5q9 ¨ 0.5`

ˆ

20

10

˙

0.110p0.9q10q “ 3.4040 ¨ 10´4

Task 7 – Another continuous r.v.

The density function of X is given by

fpxq “

#

a` bx2 when 0 ď x ď 1

0 otherwise.

If ErXs “ 3
5 , find a and b.

To find the value of two variables, we need two equations to solve as a system. We know that
ErXs “ 3

5 , so we know, by the definition of expected value, that

ErXs “
ż 8

´8

xfpxqdx “
3

5

Since fpxq is defined to be 0 outside of the given range, we can integrate within only that range,
plugging in fpxq:

ErXs “
ż 8

´8

xfpxqdx “

ż 0

´8

xfpxqdx`

ż 1

0

xfpxqdx`

ż 8

1

xfpxqdx “

ż 1

0

xpa` bx2qdx

“

ż 1

0

pax` bx3qdx “
ax2

2
`

bx4

4

ˇ

ˇ

ˇ

ˇ

1

0

“
a

2
`

b

4
“

3

5

We also know that a valid density function integrates to 1 over all possible values. Thus, we can
perform the same process to get a second equation:

ż 8

´8

fpxqdx “

ż 0

´8

xfpxqdx`

ż 1

0

xfpxqdx`

ż 8

1

xfpxqdx “

ż 1

0

pa`bx2qdx “ ax`
bx3

3

ˇ

ˇ

ˇ

ˇ

1

0

“ a`
b

3
“ 1

Solving this system of equations we get that a “ 3
5 , b “

6
5

Task 8 – Point on a line

A point is chosen at random on a line segment of length L. Interpret this statement (i.e., define the relevant
random variable(s)) and find the probability that the ratio of the shorter to the longer segment is less than 1

4 .
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Define RV X to be the distance of your random point from the leftmost side of the stick. Since we’re
choosing a point at random, this RV has an equal likelihood of any distance from 0 to L, making it
a continuous uniform RV with parameters a “ 0, b “ L. For the ratio to be less than 1

4 , the shorter

segment has to be less than L
5 in length.

This can happen when X ă L
5 or X ą 4L

5 . Thus, using the CDF of a continuous uniform distribution,
the probability that the ratio is less than 1

4 is

PpX ď
L

5
q ` PpX ą

4L

5
q “ FXp

L

5
q ` p1´ FXp

4L

5
qq “

L
5 ´ 0

L´ 0
` p1´

4L
5 ´ 0

L´ 0
q “

1

5
` p1´

4

5
q “

2

5

Task 9 – Min and max of i.i.d. random variables

Let X1, X2, . . . , Xn be i.i.d. random variables each with CDF FXpxq and pdf fXpxq. Let Y “ minpX1, . . . , Xnq

and let Z “ maxpX1, . . . , Xnq. Show how to write the CDF and pdf of Y and Z in terms of the functions FXp¨q

and fXp¨q.

The intuition for this problem follows from the definition of max and min. If the max of some random
variables X1, . . . , Xn is less than some z, then all X1, . . . , Xn must be less than z. Similarly, if the
min is greater than some y, then all the random variables must take values greater than y.

Then we first compute the CDFs of Z and Y as follows:

FZpzq “ P pZ ă zq

“ P pX1 ă z, ...,Xn ă zq rDefinition of maxs

“ P pX1 ă zq ¨ ... ¨ P pXn ă zq rIndependences

“ pFXpzqq
n

FY pyq “ P pY ă yq

“ 1´ P pY ą yq

“ 1´ P pX1 ą y, ..., Xn ą yq rDefinition of mins

“ 1´ P pX1 ą yq ¨ ... ¨ P pXn ą yq rIndependences

“ 1´ p1´ FXpyqq
n

Using the fact that fXpxq “
d
dxFXpxq and the CDFs that we found, we can compute the pdfs of Z

and Y as follows:

fZpzq “
d

dz
FZpzq

“
d

dz
pFXpzqq

n

“ n ¨ FXpzq
n´1 ¨

ˆ

d

dz
FXpzq

˙

“ n ¨ FXpzq
n´1 ¨ fXpzq
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fY pyq “
d

dy
FY pyq

“
d

dy
p1´ p1´ FXpyqq

nq

“ ´n ¨ p1´ FXpyqq
n´1 ¨

d

dy
p1´ FXpyqq

“ n ¨ p1´ FXpyqq
n´1 ¨ fXpyq

Task 10 – CLT example

Let X be the sum of 100 real numbers, and let Y be the same sum, but with each number rounded to the nearest
integer before summing. If the roundoff errors (the difference between a real number and that number rounded
to the nearest integer) are independent and uniformly distributed between -0.5 and 0.5, what is the approximate
probability that |X ´ Y | ą 3?

Let X “
ř100

i“1 Xi, and Y “
ř100

i“1 rpXiq, where rpXiq is Xi rounded to the nearest integer. Then,
we have

X ´ Y “
100
ÿ

i“1

Xi ´ rpXiq

Note that each Xi ´ rpXiq is simply the round off error, which is distributed as Unifp´0.5, 0.5q.
Since X ´ Y is the sum of 100 i.i.d. random variables with mean µ “ 0 and variance σ2 “ 1

12 ,
X ´Y «W „ Np0, 100

12 q by the Central Limit Theorem. For notational convenience let Z „ Np0, 1q.
Note that since X is a continuous random variable, X ´ Y is also a continuous random variable so
we do not need to apply continuity correction.

Pp|X ´ Y | ą 3q « Pp|W | ą 3q rCLTs

“ PpW ą 3q ` PpW ă ´3q rNo overlap between W ą 3 and W ă ´3s

“ 2 PpW ą 3q rSymmetry of normals

“ 2 P

˜

W ´ 0
a

100{12
ą

3´ 0
a

100{12

¸

« 2 PpZ ą 1.039q rStandardize W s

“ 2 p1´ PpZ ď 1.039qq

“ 2 p1´ Φp1.039qq « 0.29834

Task 11 – Will I Get My Package

A delivery guy in some company is out delivering n packages to n customers, where n P t2, 3, 4, ...,8u, n ą 1.
Not only does he hand each customer a package uniformly at random from the remaining packages, he opens
the package before delivering it with probability 1

2 . Let X be the number of customers who receive their own
packages unopened.

a) Compute the expectation ErXs.

Let Xi be an indicator random variable where Xi “ 1 if the ith customer gets their correct package
and the package is unopened, and Xi “ 0 otherwise. So, we have that X “

řn
i“1 Xi. By Linearity

of Expectation,

ErXs “ Er
n

ÿ

i“1

Xis “

n
ÿ

i“1

ErXis
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Since Xi is a Bernoulli random variable, we have

ErXis “ PpXi “ 1q “
1

2n

since the ith customer will get their own package with probability 1
n and it will be unopened with

probability 1
2 , and the delivery guy opens the packages independently. Hence, ErXs “ n ¨ 1

2n “
1
2 .

b) Compute the variance VarpXq.

To calculate VarpXq, we need to find ErX2s. By Linearity of Expectation,

ErX2s “ ErpX1 `X2 ` . . .`Xnq
2s “ Er

ÿ

i,j

XiXjs “
ÿ

i,j

ErXiXjs

Then, we consider two cases, either i “ j or i ‰ j. If i “ j, then ErXiXjs “ ErX2
i s. Hence,

ř

i,j ErXiXjs “
ř

i ErX2
i s `

ř

i‰j ErXiXjs. So, by LOTUS, we have for all i,

ErX2
i s “ 12 ¨ PpXi “ 1q ` 02 ¨ PpXi “ 0q “ ErXis “

1

2n

To find ErXiXjs, we need to calculate PpXiXj “ 1q. So, using the chain rule, we have

PpXiXj “ 1q “ PpXi “ 1XXj “ 1q “ PpXi “ 1qPpXj “ 1|Xi “ 1q “
1

2n
¨

1

2pn´ 1q

since if the ith customer has received their own package, then the jth customer has n ´ 1 choices
left. Hence,

ErX2s “ n ¨
1

2n
` n ¨ pn´ 1q ¨

1

2n
¨

1

2pn´ 1q
“

3

4

VarpXq “ ErX2s ´ pErXsq2 “
3

4
´

ˆ

1

2

˙2

“
1

2

Task 12 – Subset Card Game

Jonathan and Yiming are playing a card game. The cards have not yet been dealt from the deck to their hands.
This deck has k ą 2 cards, and each card has a real number written on it. In this deck, the sum of the card values
is 0, and that the sum of squares of the values of the cards is 1. Specifically, if the card values are c1, c2, . . . , ck,
then we have

řk
i“1 ci “ 0 and

řk
i“1 c

2
i “ 1.

The cards are then going to be dealt randomly in the following fashion: for each card in the deck, a fair coin
is flipped. If the coin lands heads, then the card goes to Yiming, and if the coin lands tails, the card goes to
Jonathan. Note that it is possible for either player to end up with no cards/all the cards.

Calculate ErSs and VarpSq, where S is the sum of value of cards in Yiming’s hand (where an empty hand
corresponds to a sum of 0). The answer should not include a summation.

Let Ii be the indicator random variable where Ii “ 1 if the ith card goes to Yiming, and Ii “ 0
otherwise. Then, we have S “

řk
i“1 ciIi as the value of Yiming’s hand. Then, we see that ErSs “

řk
i“1 ci ¨ErIis “

řk
i“1 ci ¨

1
2 “ 0 ¨ 12 “ 0 since the probability of getting either heads or tails is 1

2 , and

VarpSq “
k

ÿ

i“1

VarpciIiq rIndependence of Iis

“

k
ÿ

i“1

c2iVarpIiq rProperty of Variances

“ 1 ¨ VarpIiq rIi are identically distributeds

11



Since we know that Ii is a Bernoulli random variable, then its variance isVarpIiq “ pp1´pq “ 1
2 ¨

1
2 “

1
4 .

Thus, we see that VarpSq “ 1
4 .

Task 13 – Poisson CLT practice

Suppose X1, . . . , Xn are iid Poissonpλq random variables, and let Xn “
1
n

řn
i“1 Xi, the sample mean. How large

should we choose n to be such that Ppλ2 ď Xn ď
3λ
2 q ě 0.99? Use the CLT and give an answer involving Φ´1p¨q.

Then evaluate it exactly when λ “ 1{10 using the Φ table on the last page.

We know EXi “ Var ppqXiq “ λ. By the CLT, Xn « N
`

λ, λ
n

˘

, so we can standardize this normal
approximation.

Pp
λ

2
ď Xn ď

3λ

2
q « Pp

´λ{2
a

λ{n
ď Z ď

λ{2
a

λ{n
q “ Φ

˜

λ{2
a

λ{n

¸

´ Φ

˜

´λ{2
a

λ{n

¸

“ Φ

˜

λ{2
a

λ{n

¸

´

˜

1´ Φ

˜

λ{2
a

λ{n

¸¸

“ 2Φ

˜

λ{2
a

λ{n

¸

´ 1 ě 0.99Ñ Φ

˜

λ{2
a

λ{n

¸

ě 0.995

Ñ

?
λ

2

?
n ě Φ´1 p0.995q Ñ n ě

4

λ

“

Φ´1 p0.995q
‰2

We have λ “ 1
10 and from the table, Φ´1 p0.995q « 2.575 so that n ě 4

1{10 ¨ 2.575
2 “ 265.225. So

n “ 266 is the smallest value that will satisfy the condition.

Task 14 – Random Variables Warm-Up

[Credit: Berkeley CS 70] Let X and Y be random variables, each taking values in the set {0,1,2}, with joint
distribution

PrX “ 0, Y “ 0s “ 1{3 PrX “ 0, Y “ 1s “ 0 PrX “ 0, Y “ 2s “ 1{3

PrX “ 1, Y “ 0s “ 0 PrX “ 1, Y “ 1s “ 1{9 PrX “ 1, Y “ 2s “ 0

PrX “ 2, Y “ 0s “ 1{9 PrX “ 2, Y “ 1s “ 1{9 PrX “ 2, Y “ 2s “ 0

a) What are the marginal distributions of X and Y ?

b) What are ErXs and ErY s?

c) Let I be the indicator that X “ 1, and J be the indicator that Y “ 1. What are ErIs, ErJs and ErIJs?

d) In general, let IA and IB be the indicators for events A and B in a probability space (Ω, P). What is ErIAIBs,
expressed in terms of the probability of some event?

a) By the law of total probability

PrX “ 0s “ PrX “ 0, Y “ 0s ` PrX “ 0, Y “ 1s ` PrX “ 0, Y “ 2s “ 1{3` 0` 1{3 “ 2{3

and similarly

PrX “ 1s “ 0` 1{9` 0 “ 1{9

PrX “ 2s “ 1{9` 1{9` 0 “ 2{9

12



As a sanity check, these three numbers are all positive and they add up to 2{3` 1{9` 2{9 “ 1
as they should. The same kind of calculation gives

PrY “ 0s “ 1{3` 0` 1{9 “ 4{9

PrY “ 1s “ 0` 1{9` 1{9 “ 2{9

PrY “ 2s “ 1{3.

b) From the above marginal distributions, we can compute

ErXs “ 0 ¨ PrX “ 0s ` 1 ¨ PrX “ 1s ` 2 ¨ PrX “ 2s “ 5{9

ErY s “ 0 ¨ PrY “ 0s ` 1 ¨ PrY “ 1s ` 2 ¨ PrY “ 2s “ 8{9

c) We know that taking the expectation of an indicator for some event gives the probability of that
event, so

ErIs “ PrX “ 1s “ 1{9

ErJs “ PrY “ 1s “ 2{9.

The random variable IJ is equal to one if I “ 1 and J “ 1, and is zero otherwise. In other
words, it is the indicator for the event that I “ 1 and J “ 1:

ErIJs “ PrI “ 1, J “ 1s “ PrX “ 1, Y “ 1s “ 1{9.

d) By what we said in the previous part of the solution, IAIB is the indicator for the event AXB,
so

ErIAIBs “ PrAXBs.

Task 15 – Joint Distributions

a) Give an example of discrete random variables X and Y with the property that ErXY s ‰ ErXsErY s. Specify
the joint distribution of X and Y .

Let PpX “ 1q “ 1
2 ,PpX “ ´1q “ 1

2 and Y ” X. Then, ErXs “ 1PpX “ 1q ´ 1PpX “ ´1q “
1
2 ´

1
2 “ 0, and ErY s “ ErXs. Similarly, since Y “ X, we have that ErXY s “ ErX2s “ 1 and

ErXsErY s “ 0.

The joint distribution is defined by PpX “ 1, Y “ 1q “ 1
2 ,PpX “ ´1, Y “ ´1q “ 1

2 , 0 otherwise.

b) Give an example of discrete random variables X and Y that (i) are not independent and (ii) have the property
that ErXY s “ 0,ErXs “ 0,ErY s “ 0. Again, specify the joint distribution of X and Y .

One example is given by the joint distribution PpX “ ´1, Y “ 1
3 q “ PpX “ 1, Y “ 1

3 q “ PpX “

0, Y “ ´ 2
3 q “

1
3 .

These are not independent because P pY “ 1
3 q “

2
3 ‰ 1 “ PpY “ 1

3 |X “ 1q. However, ErXs “
ErY s “ ErXY s “ 0.

Task 16 – Covariance Connection

Let X be the network connection status, where X “ 0 represents a stable connection and X “ 1 represents an
unstable connection. Let Y be the number of successes in data transmission, taking values in the set t0, 1, 2u. If
X “ 0, Y follows a Binomial distribution Binp2, 0.8q, and if X “ 1, Y follows a Binomial distribution Binp2, 0.3q.
The probabilities for X are given by P pX “ 0q “ 0.8 and P pX “ 1q “ 0.2. Find CovpX,Y q. (note that we
don’t know that X and Y are independent here!)
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To calculate the covariance CovpX,Y q, we need to determine ErXs, ErY s, and ErXY s. The
covariance is then given by the formula:

CovpX,Y q “ ErXY s ´ ErXsErY s

First, we calculate ErXs: ErXs “ 0 ¨ P pX “ 0q ` 1 ¨ P pX “ 1q “ 0 ¨ 0.8` 1 ¨ 0.2 “ 0.2

Next, we calculate ErY s. First, we calculate ErY | X “ 0s and ErY | X “ 1s. Based on what’s given
in the problem and using the formula for expectation for a binomial: ErY | X “ 0s “ 2 ¨ 0.8 “ 1.6
and ErY | X “ 1s “ 2 ¨ 0.3 “ 0.6. Using the law of total expectation:

ErY s “ ErY | X “ 0sP pX “ 0q ` ErY | X “ 1sP pX “ 1q “ 1.6 ¨ 0.8` 0.6 ¨ 0.2 “ 1.4

To compute ErXY s, we first construct the joint PMF for XY and then use the definition of ex-
pectation. The possible values for XY are 0, 1, and 2. Let’s compute the probabilities for each
value:

P pXY “ 0q “ P pX “ 0Y Y “ 0q “ P pX “ 0q ` P pY “ 0q ´ P pX “ 0X Y “ 0q

“ P pX “ 0q ` P pY “ 0q ´ P pX “ 0qP pY “ 0 | X “ 0q “ 0.8` 0.13´ 0.8 ¨ 0.22 “ 0.898

P pXY “ 1q “ P pX “ 1X Y “ 1q “ P pX “ 1qP pY “ 1 | X “ 1q “ 0.2 ¨ p2 ¨ 0.3 ¨ 0.7q “ 0.084

P pXY “ 2q “ P pX “ 1X Y “ 2q “ P pX “ 1qP pY “ 2 | X “ 1q “ 0.2 ¨ p0.32q “ 0.018

In the above calculations, we use that P pY “ 0q “ P pY “ 0|X “ 0qP pX “ 0q ` P pY “ 0|X “

1qP pX “ 1q “ 0.22 ¨ 0.8` 0.72 ¨ 0.2 “ 0.13 Now, using the definition of expectation, we have:

ErXY s “ 0 ¨ 0.898` 1 ¨ 0.084` 2 ¨ 0.018 “ 0.12

Therefore, ErXY s “ 0.12. Finally, we calculate the covariance CovpX,Y q:

CovpX,Y q “ ErXY s ´ ErXsErY s “ 0.12´ 0.2 ¨ 1.4 “ ´0.16

Therefore, the covariance CovpX,Y q is ´0.16. The negative covariance of -0.16 between the net-
work connection status X and the number of successes in data transmission Y indicates an inverse
relationship, suggesting that as the network connection status becomes less stable (i.e., as X “ 1),
the likelihood of successess in data transmission decreases, and vice versa, as expected!
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