
CSE 312: Foundations of Computing II Summer 2024

Section 7 – Solutions

Review

- Multivariate: Discrete to Continuous:

Discrete Continuous
Joint PMF/PDF pX,Y px, yq “ P pX “ x, Y “ yq fX,Y px, yq ‰ P pX “ x, Y “ yq

Joint range/support
ΩX,Y tpx, yq P ΩX ˆ ΩY : pX,Y px, yq ą 0u tpx, yq P ΩX ˆ ΩY : fX,Y px, yq ą 0u

Joint CDF FX,Y px, yq “
ř

tďx,sďy pX,Y pt, sq FX,Y px, yq “
şx

´8

şy

´8
fX,Y pt, sq dsdt

Normalization
ř

x,y pX,Y px, yq “ 1
ş8

´8

ş8

´8
fX,Y px, yq dxdy “ 1

Marginal PMF/PDF pXpxq “
ř

y pX,Y px, yq fXpxq “
ş8

´8
fX,Y px, yqdy

Expectation ErgpX,Y qs “
ř

x,y gpx, yqpX,Y px, yq ErgpX,Y qs “
ş8

´8

ş8

´8
gpx, yqfX,Y px, yqdxdy

Independence @x, y, pX,Y px, yq “ pXpxqpY pyq @x, y, fX,Y px, yq “ fXpxqfY pyq

must have ΩX,Y “ ΩX ˆ ΩY ΩX,Y “ ΩX ˆ ΩY

Conditional PMF/PDF pX|Y px|yq “
pX,Y px,yq

pY pyq
fX|Y px|yq “

fX,Y px,yq

fY pyq

Conditional Expectation ErX|Y “ ys “
ř

x x ¨ pX|Y px|yq ErX|Y “ ys “
ş8

´8
xfX|Y px|yqdx

- Law of Total Probability (Continuous): A is an event, and X is a continuous random variable with density
function fXpxq.

PpAq “

ż 8

´8

PpA | X “ xqfXpxqdx

- Conditional Expectation: Let X and Y be random variables. Then, the conditional expectation of X given
Y “ y is

ErX|Y “ ys “
ÿ

xPΩX

x ¨ P pX “ x|Y “ yq X discrete

and for any event A,
ErX|As “

ÿ

xPΩX

x ¨ P pX “ x|Aq X discrete

Note that linearity of expectation still applies to conditional expectation: ErX ` Y |As “ ErX|As ` ErY |As

- Law of Total Expectation (Event Version): Let X be a random variable, and let events A1, ..., An partition
the sample space. Then,

ErXs “

n
ÿ

i“1

ErX|AisP pAiq

- Law of Total Expectation (RV Version): Suppose X and Y are random variables. Then,

ErXs “
ÿ

y

ErX|Y “ yspY pyq Y discrete r.v..

ErXs “

ż 8

´8

ErX|Y “ ysfY pyqdy Y continuous r.v.

- Markov’s Inequality: Let X be a non-negative random variable, and α ą 0. Then,

PpX ě αq ď
ErXs

α
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- Chebyshev’s Inequality: Suppose Y is a random variable with EY “ µ and VarpY q “ σ2. Then, for any
α ą 0,

Pp|Y ´ µ| ě αq ď
σ2

α2

- (Multiplicative) Chernoff Bound: Let X1, X2, ..., Xn be independent Bernoulli random variables.

Let X “ Σn
i“1Xi, and µ “ EX. Then, for any 0 ď δ ď 1,

–

P

˜

n
ÿ

i“1

Xi ě p1 ` δqµ

¸

ď exp

ˆ

´
δ2µ

3

˙

–

P

˜

n
ÿ

i“1

Xi ď p1 ´ δqµ

¸

ď exp

ˆ

´
δ2µ

2

˙

2



Task 1 – Content Review

a) Select one: For an event A and a continuous random variable X with density fXpxq,

PpAq “
ş8

´8
PpA | X “ xqPpX “ xqdx

PpAq “
ş8

´8
PpA | X “ xqfXpxqdx

PpAq “
ş8

´8
xfXpxqdx

PpAq “
ş8

´8
PpA | X “ xqdx

The second choice follows directly by definition of continuous law of total probability.

b) True or false: the Union Bound always gives a result in r0, 1s.

False. Consider X and Y , which are independent indicator random variables.

Suppose pXpxq “

#

0.75 x “ 0

0.25 x “ 1
and pY pyq “

#

0.75 y “ 0

0.25 y “ 1
.

Then we may apply the Union Bound to place a bound on P pX “ 0 Y Y “ 0q:

P pX “ 0 Y Y “ 0q ď P pX “ 0q ` P pY “ 0q “ 0.75 ` 0.75 “ 1.5.

In these cases, the Union Bound tells us very little, since the probability of any event occurring
is at most 1.

c) True or false: Markov’s Inequality always gives a non-negative result.

True. Markov’s Inequality is

P ppqX ě αq ď
EX
α

as long as X is a non-negative random variable and α ą 0. Since X is a non-negative random
variable, EX ě 0, so EX

α ě 0.

d) Suppose C and D are discrete random variables. Then ErC|D “ ds “

ř

d dpD|Cpd|cq
ř

c cpC|Dpc|dq
ş8

´8
cfc|ddx

ErCs

ErDs

Choice b is the correct answer from the definition of conditional expectation for discrete random
variables.

e) Suppose X and Y are random variables and A is an event. Given that ErX|As “ 4 and ErY |As “ 10,
what is Er2X ` Y {2|As?

14

18

9

13
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Choice d is the correct answer since linearity of expectation still applies to conditional expectation:

Er2X ` Y {2|As “ Er2X|As ` ErY {2|As “ 2ErX|As ` ErY |As{2 “ 2 ¨ 4 ` 10{2 “ 8 ` 5 “ 13.

f) True or false: Chebyshev’s Inequality can best be described as giving an upper bound on the distribution’s
right tail.

False. Chebyshev’s Inequality gives an upper bound on the sum of the probabilties of the left and
right tails of the distribution.

Joint Distributions

Task 2 – Who fails first?

Here’s a question that commonly comes up in industry, but isn’t immediately obvious. You have a disk with
probability p1 of failing each day. You have a CPU which independently has probability p2 of failing each day.
What is the probability that your disk fails before your CPU?

a) Compute the probability by summing over the relevant part of the probability space.

We model the problem by considering two Geometric random variables and deriving the probability
that one is smaller than the other. Let X1 „ Geometricpp1q. Let X2 „ Geometricpp2q. Assume
X1 and X2 are independent. We want P pX1 ă X2q.

P pX1 ă X2q “

8
ÿ

k“1

8
ÿ

k2“k`1

pX1,X2
pk, k2q

“

8
ÿ

k“1

8
ÿ

k2“k`1

pX1
pkq ¨ pX2

pk2q (by independence)

“

8
ÿ

k“1

8
ÿ

k2“k`1

p1 ´ p1qk´1p1 ¨ p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1

8
ÿ

k2“k`1

p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1p1 ´ p2qk
8
ÿ

k2“1

p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1p1 ´ p2qk ¨ 1

“ p1p1 ´ p2q

8
ÿ

k“1

rp1 ´ p2qp1 ´ p1qsk´1

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

b) Try to provide an intuitive reason for the answer.
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Think about X1 and X2 in terms of coin flips. Notice that all the flips are irrelevant until the final
flip, since before the final flip, both the X1 coin and the X2 coin only yield tails. P pX1 ă X2q is
the probability that on the final flip, where by definition at least one coin comes up heads, it is
the case that the X1 coin is heads and the X2 coin is tails. So we’re looking for the probability
that the X1 coin produces a heads and the X2 coin produces a tails, conditioned on the fact that
they’re not both tails, which is derived as:

P pCoin 1 “ H& Coin 2 “ T | not both T q “
P pCoin 1 “ H& Coin 2 “ T q

P pnot both T q

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

Another way to approach this problem is to use conditioning. Recall that in computing the
probability of an event, we saw in Chapter 2 that it is often useful to condition on other events.
We can use this same idea in computing probabilities involving random variables, because X “ k
and Y “ y are just events.

c) Recompute the probability using the law of total probability, conditioning on the value of X1.

Again, let X1 „ Geometricpp1q and X2 „ Geometricpp2q, where X1 and X2 are independent.
Then

P pX1 ă X2q “

8
ÿ

k“1

P pX1 ă X2 | X1 “ kq ¨ P pX1 “ kq

“

8
ÿ

k“1

P pk ă X2 | X1 “ kq ¨ P pX1 “ kq

“

8
ÿ

k“1

P pX2 ą kq ¨ P pX1 “ kq (by independence)

“

8
ÿ

k“1

p1 ´ p2qk ¨ p1 ´ p1qk´1 ¨ p1

“ p1p1 ´ p2q

8
ÿ

k“1

rp1 ´ p2qp1 ´ p1qsk´1

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

Task 3 – Continuous joint density

The joint density of X and Y is given by

fX,Y px, yq “

#

xe´px`yq x ą 0, y ą 0

0 otherwise.

and the joint density of W and V is given by

fW,V pw, vq “

#

2 0 ă w ă v, 0 ă v ă 1

0 otherwise.

Are X and Y independent? Are W and V independent?
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For two random variables X,Y to be independent, we must have fX,Y px, yq “ fXpxqfY pyq for all
x P ΩX , y P ΩY . Let’s start with X and Y by finding their marginal PDFs. By definition, and using
the fact that the joint PDF is 0 outside of y ą 0, we get:

fXpxq “

ż 8

0

xe´px`yqdy “ e´xx

We do the same to get the PDF of Y , again over the range x ą 0:

fY pyq “

ż 8

0

xe´px`yqdx “ e´y

Since e´xx ¨ e´y “ xe´x´y “ xe´px`yq for all x, y ą 0, X and Y are independent.

We can see thatW and V are not independent simply by observing that ΩW “ p0, 1q and ΩV “ p0, 1q,
but ΩW,V is not equal to their Cartesian product. Specifically, looking at their range of fW,V pw, vq.
Graphing it with w as the ”x-axis” and v as the ”y-axis”, we see that :

The shaded area is where the joint pdf is strictly positive. Looking at it, we can see that it is not
rectangular, and therefore it is not the case that ΩW,V “ ΩW

Ś

ΩV . Remember, the joint range
being the Cartesian product of the marginal ranges is not sufficient for independence, but it is neces-
sary. Therefore, this is enough to show that they are not independent.

Conditional Distributions, Law of total expectation, Continuous LoTP

Task 4 – A Dysfunctional Family

Rick and his grandson Morty are set to meet at a certain time. Since their relationship is a little strained, neither
of them wants to be there on time. Let X „ Unifp0, 10q be the amount of minutes Morty is going to be late.
Rick has cameras around the meeting spot and will observe Morty’s arrival time X “ x. Then, he will arrive at
the meeting spot Unifpx, 5xq minutes late. Let Y be the random variable indicating how late Rick will be.

a) Using the above definitions determine fX , fY |X , and fXY . (You will want to determine fY X and use it to
determine fXY .).

Since X is a uniform RV on p0, 10q, we have

fXpxq “

#

1
10 x P p0, 10q

0 otherwise
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Also given that X “ x, Y is also uniform on px, 5xq so

fY |Xpy|xq “

#

1
4x y P px, 5xq

0 otherwise

Since fY |Xpy|xq “
fY Xpy,xq

fXpxq
, we have

fY Xpy, xq “ fY |Xpy|xq ¨ fXpxq “

#

1
40x x P p0, 10q and y P px, 5xq

0 otherwise

Then

fXY px, yq “ fY Xpy, xq “

#

1
40x x P p0, 10q and y P px, 5xq

0 otherwise

b) Compute ErY s.

By definition since Y conditioned on X “ x is a uniform RV on px, 5xq, we have

ErY | X “ xs “
x ` 5x

2
“ 3x.

(Alternatively, we could compute it from first principles using fY |X and the definition

ErY |X “ xs “

ż 8

´8

y ¨ fY |Xpy|xqdy “

ż 5x

x

y

4x
dy “

y2

8x

ˇ

ˇ

ˇ

y“5x

y“x
“

25x2

8x
´

x2

8x
“

24x

8
“ 3x.q

Then, using the Law of Total Expectation we get:

ErY s “

ż 8

´8

ErY |X “ xs ¨ fXpxqdx “

ż 10

0

3x

10
dx “

3

10
¨
x2

2

ˇ

ˇ

ˇ

10

0
“

300

20
´ 0 “ 15

Note: This is a place where the Law of Total Expectation makes things much easier than figuring
out the PDF of Y and doing direct calculation of the expectation:
Just to see how bad it would get... by definition we have:

fY pyq “

ż 8

´8

fXY px, yqdx “

ż 10

0

fXY px, yqdx

since we know that fXY px, yq is 0 when x ď 0 or x ě 10. However, we can’t just plug in 1
40x for

fXY px, yq because we also need to satisfy that x ď y ď 5x for that value to be correct. For a
fixed value of y, which values of x could work? We need to have x ď y, but we also need to have
y ď 5x or in other worse x ě y{5. In particular, this is equivalent to y{5 ď x ď y. Therefore we
need maxp0, y{5q ď x ď minp10, yq. Therefore

fY pyq “

ż 10

0

fXY px, yqdx “

ż minp10,yq

maxp0,y{5q

1

40x
dx.

This would have non-zero contributions for all y with 0 ď y ď 50 and would be a big mess to
calculate since the integral involves 1{x which would have logarithms in it...
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Task 5 – Law of Total Probability Review

a) (Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one
of ΩU “ t0, 1

n ,
2
n , ..., 1u (notice this set has size n ` 1). Let H be the event that the coin comes up heads.

What is PpHq?

We can use the law of total probability, conditioning on U “ k
n for k “ 0, ..., n. Note that the

probability of getting heads conditioning on a fixed U value is U , and that the probability of U
taking on any value in its range is 1

n`1 since it is discretely uniform.

PpHq “

n
ÿ

k“0

P
ˆ

H | U “
k

n

˙

P
ˆ

U “
k

n

˙

“

n
ÿ

k“0

k

n
¨

1

n ` 1

“
1

npn ` 1q

n
ÿ

k“0

k

“
1

npn ` 1q

npn ` 1q

2
“

1

2

b) Now suppose U „ Uniform(0,1) has the continuous uniform distribution over the interval r0, 1s. What is
PpHq?

Use the continuous version of the law of total probability: suppose E is an event, and X is a continuous
random variable with density function fXpxq. Then

PpEq “

ż 8

´8

PpE | X “ xqfXpxqdx

We do the same thing, this time using the continuous law of total probability. Note, this time,
that we’re conditioning on U “ u and taking the integral with respect to u, and that the density
of U for any value in its range is 1 because it is uniformly random.

PpHq “

ż 8

´8

PpH | U “ uqfU puqdu

We can take the integral from 0 to 1 instead because outside of that range the density of U is 0.

“

ż 1

0

PpH | U “ uqfU puqdu “

ż 1

0

u ¨ 1 du “
1

2
ru2s10 “

1

2

Task 6 – 3 points on a line

Three points X1, X2, X3 are selected at random on a line L (continuous independent uniform distributions).
What is the probability that X2 lies between X1 and X3?
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Let X1, X2, X3 „ Unifp0, 1q.

P ppqX1 ă X2 ă X3q “

ż 8

´8

P ppqX1 ă X2 ă X3 | X2 “ xq fX2
pxq dx Continuous LoTP

“

ż 8

´8

P ppqX1 ă x,X3 ą xq fX2pxq dx Independence of X1, X2, X3

“

ż 8

´8

P ppqX1 ă xq P ppqx ă X3q fX2
pxq dx Independence of X1, X3

“

ż 8

´8

FX1
pxq p1 ´ FX3

pxqq fX2
pxq dx

“

ż 1

0

x p1 ´ xq 1 dx

“
x2

2
´

x3

3

ˇ

ˇ

ˇ

ˇ

1

0

“
1

6

Task 7 – Lemonade Stand

Suppose I run a lemonade stand, which costs me $100 a day to operate. I sell a drink of lemonade for $20. Every
person who walks by my stand either buys a drink or doesn’t (no one buys more than one). If it is raining, n1

people walk by my stand, and each buys a drink independently with probability p1. If it isn’t raining, n2 people
walk by my stand, and each buys a drink independently with probability p2. It rains each day with probability p3,
independently of every other day. Let X be my profit over the next week. In terms of n1, n2, p1, p2 and p3, what
is ErXs?

Let R be the event it rains. Let Xi be how many drinks I sell on day i for i “ 1, ..., 7. We are
interested in X “

ř7
i“1 p20Xi ´ 100q. We have Xi|R „ Binomialpn1, p1q, so ErXi|Rs “ n1p1.

Similarly, Xi|R
C „ Binomialpn2, p2q, so ErXi|R

Cs “ n2p2. By the law of total expectation,

µ “ ErXis “ ErXi|RsP pRq ` ErXi|R
CsP

`

RC
˘

“ n1p1p3 ` n2p2p1 ´ p3q

Hence, by linearity of expectation,

ErXs “ Er

7
ÿ

i“1

p20Xi ´ 100qs “ 20
7

ÿ

i“1

ErXis ´ 700 “ 140µ ´ 700

“ 140 ¨ pn1p1p3 ` n2p2p1 ´ p3qq ´ 700.

Task 8 – Trapped Miner

A miner is trapped in a mine containing 3 doors.

- D1: The 1st door leads to a tunnel that will take him to safety after 3 hours.

- D2: The 2nd door leads to a tunnel that returns him to the mine after 5 hours.

- D3: The 3rd door leads to a tunnel that returns him to the mine after a number of hours that is Binomial
with parameters p12, 1

3 q.

At all times, he is equally likely to choose any one of the doors. What is the expected number of hours for this
miner to reach safety?
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Let T = number of hours for the miner to reach safety. (T is a random variable)
Let Di be the event the ith door is chosen. i P t1, 2, 3u. Finally, let T3 be the time it takes to return
to the mine in the third case only (a random variable). Note that the expectation of T3 is 12 ˚ 1

3
because it is binomially distributed with parameters n “ 12, p “ 1

3 . By Law of Total Expectation,
linearity of expectation, and by applying the conditional expectations given by the problem statement:

ErT s “ ErT |D1sP pDq1 ` ErT |D2sP pDq2 ` ErT |D3sP pDq3

“ 3 ¨
1

3
` p5 ` ErT sq ¨

1

3
` pErT3 ` T sq ¨

1

3

“ 3 ¨
1

3
` p5 ` ErT sq ¨

1

3
` pErT3s ` ErT sq ¨

1

3

“ 3 ¨
1

3
` p5 ` ErT sq ¨

1

3
` p4 ` ErT sq ¨

1

3

Solving this equation for ErT s, we get

ErT s “ 12

Therefore, the expected number of hours for this miner to reach safety is 12.

Task 9 – Elevator rides

[This is the problem we did in class.] The number X of people who enter an elevator on the ground floor is a
Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally
likely to get off at any one of the N floors, independently of where others get off, compute the expected number
of stops the elevator will make before discharging all the passengers.

Let S be the number of stops the elevator makes, and X „ Poip10q. We shall calculate ErSs.
By the law of total expectation, partitioning on the value of X, we have

ErSs “

8
ÿ

i“0

ErS|X “ isP pX “ iq

By the definition of Poison distribution, we know

P pX “ iq “ e´10 10
i

i!

To calculate ErS|X “ is, let S “ Y1 ` Y2 ` ... ` YN , where

Yj “

#

1 if someone gets off at the jth floor

0 otherwise

Then, by the linearity of conditional expectation, we have

ErS|X “ is “ ErY1 ` Y2 ` ... ` YN |X “ is “

N
ÿ

j“1

ErYj |X “ is “

N
ÿ

j“1

P pYj “ 1|X “ iq

To figure out P pYj “ 1|X “ iq, it would be more convenient to find its complement, P pYj “ 0|X “ iq,
which represents the probability that nobody gets off at jth floor. Since each person is equally likely
to get off at any one of N floor, we know P pYj “ 0|X “ iq “ pN´1

N qi. Thus, we have

ErS|X “ is “

N
ÿ

j“1

P pYj “ 1|X “ iq “

N
ÿ

j“1

1 ´ P pYj “ 0|X “ iq “

N
ÿ

j“1

1 ´ p
N ´ 1

N
qi
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Finally, we find

ErSs “

8
ÿ

i“0

ErS|X “ isP pX “ iq “

8
ÿ

i“0

˜

N
ÿ

j“1

1 ´ p
N ´ 1

N
qi

¸

e´10 10
i

i!

Tail Bounds

Task 10 – Tail bounds

Suppose X „ Binomialp6, 0.4q. We will bound PpX ě 4q using the tail bounds we’ve learned, and compare this
to the true result.

a) Give an upper bound for this probability using Markov’s inequality. Why can we use Markov’s inequality?

We know that the expected value of a binomial distribution is np, so: PpX ě 4q ď
ErXs

4 “ 2.4
4 “

0.6. We can use it since X is nonnegative.

b) Give a lower bound for P pX ă 4q using Markov’s inequality.

Taking the complement of P pX ă 4q, we get 1 ´ P pX ě 4q. Since we found the upper bound
for P pX ě 4q, the lower bound for P pX ă 4q ě 1 ´ 0.6 “ 0.4.

c) Give an upper bound for this probability using Chebyshev’s inequality. You may have to rearrange alge-
braically and it may result in a weaker bound.

PpX ě 4q “ PpX ´ 2.4 ě 1.6q ď Pp|X ´ 2.4| ě 1.6q we can add those absolute value signs
because that only adds more possible values, so it is an upper bound on the probability of
X ´ 2.4 ě 1.6. Then, using Chebyshev’s inequality we get:

Pp|X ´ 2.4| ě 1.6q ď
V arpXq

1.62 “ 1.44
1.62 “ 0.5625

d) Give an upper bound for this probability using the Chernoff bound.

Since ErXs “ 6 ¨ 0.4 “ 2.4,

PpX ě 4q “ PpX´2.4 ě 4´2.4q “ pX´ErXs ě 2
3ErXsq ď e´p 2

3 q
2ErXs{4 “ e´4ˆ2.4{36 « 0.77

e) Give an upper bound for P pX ď 2q using the Chernoff bound.

PpX ď 2q “ PpX ´ 2.4 ď ´0.4q “ Pp´pX ´ 2.4q ě 0.4q ď Pp|X ´ 2.4| ě 0.4q

“ Pp|X ´ ErXs| ě 1
6ErXsq ď e´p 1

6 q
2ErXs{4 “ e´2.4{144 « 0.98

f) Give the exact probability of P pX ě 4q.

Since X is a binomial, we know it has a range from 0 to n (or in this case 0 to 6). Thus, the
possible values to satisfy X ě 4 are 4, 5, or 6. We plug in the PMF for each to get: PpX ě

4q “ PpX “ 4q ` PpX “ 5q ` PpX “ 6q “
`

6
4

˘

p0.4q4p0.6q2 `
`

6
5

˘

p0.4q5p0.6q `
`

6
6

˘

0.46 « 0.1792

Task 11 – How many samples?

Let X “ X1 ` . . . Xn be the sum of n independent Poissonpλq random variables. Recall that the Poisson
distribution has expectation and variance both equal to λ and has the summation property thatX is a Poissonpnλq

random variable.
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a) How large a value of n would Chebyshev’s inequality need to guarantee that PpX ď ErXs{2q ď 0.01?

We have

PpX ď ErXs{2q “ PpX ´ ErXs ď ´ErXs{2q ď Pp|X ´ ErXs| ě ErXs{2q.

Applying Chebyshev’s inequality we have

PpX ď ErXs{2q ď Pp|X ´ ErXs| ě ErXs{2q ď
4Var pXq

ErXs2
“

4nλ

n2λ2
“

4

nλ
.

In order for this to be at most 0.01, we require n ě 400{λ .

b) How large a value of n would Markov’s inequality need to guarantee that PpX ě ErXs{2q ď 0.01?

X is non-negative so Markov’s inequality applies to X, but no value of n will guarantee any
probability less than 1.

Task 12 – Claris’s Late!

Suppose the probability Claris is late to teaching lecture on a given day is at most 0.01. Do not make any
independence assumptions.

a) Use a Union Bound to bound the probability that Claris is late at least once over a 30-lecture quarter.

Let Ri be the event Claris is late to lecture on day i for i “ 1, ..., 30. Then, by the union bound,

P plate at least onceq “ P

˜

30
ď

i“1

Ri

¸

ď

30
ÿ

i“1

P ppqRiq runion bounds

ď

30
ÿ

i“1

0.01 rP pRiq ď 0.01s

“ 0.30

b) Use a Union Bound to bound the probability that Claris is never late over a 30-lecture quarter.

As in the previous part, let Ri be the event Claris is late to lecture on day i for i “ 1, ..., 30.
Then, by the union bound, we found that

P plate at least onceq ď 0.30
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The probability Claris is never late is the complement of the probability she is late at least once
over the 30 lectures. Taking the complement and doing algebra:

P plate at least onceq ď 0.30

´P plate at least onceq ě ´0.30 rmultiplying by negative flips the inequalitys

1 ´ P plate at least onceq ě 1 ´ 0.30

P pnever lateq ě 0.70

Note that we have now found a lower bound for this probability using the union bound because
of taking the complement.

c) Use a Union Bound to bound the probability that Claris is late at least once over a 120-lecture quarter.

Let Ri be the event Claris is late to lecture on day i for i “ 1, ..., 120. Then, by the union bound,

P plate at least onceq “ P

˜

120
ď

i“1

Ri

¸

ď

120
ÿ

i“1

P pRiq runion bounds

ď

120
ÿ

i“1

0.01 rP pRiq ď 0.01s

“ 1.20

Notice that P plate at least onceq ď 1.20 is not a very helpful bound since probabilities have to
be at most 1 already.

Task 13 – Exponential Tail Bounds

Let X „ Exppλq and k ą 1{λ. Recall that E rXs “ 1
λ and Var pXq “ 1

λ2 .

a) Use Markov’s inequality to bound PpX ě kq.

PpX ě kq ď
1

λk

b) Use Markov’s inequality to bound PpX ă kq.

From Markov’s inequality (and our answer in (a)), we know that P pX ě kq ď 1
λk . Then,

P pX ě kq ď
1

λk

´P pX ě kq ě ´
1

λk
multiplying be a negative flips the inequality

1 ´ P pX ě kq ě 1 ´
1

λk

P pX ă kq ě 1 ´
1

λk
by definition of complement

Note that because we took the complement and the sign flipped, we have now found a lower
bound for P pX ă kq.
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c) Use Chebyshev’s inequality to bound PpX ě kq.

PpX ě kq “ P
ˆ

X ´
1

λ
ě k ´

1

λ

˙

ď P
ˆ

ˇ

ˇ

ˇ

ˇ

X ´
1

λ

ˇ

ˇ

ˇ

ˇ

ě k ´
1

λ

˙

ď
1

λ2pk ´ 1{λq2
“

1

pλk ´ 1q2

d) What is the exact formula for PpX ě kq?

PpX ě kq “ e´λk

e) For λk ě 3, how do the bounds given in parts (a), (b), and (c) compare?

e´λk ă
1

pλk ´ 1q2
ă

1

λk

so Markov’s inequality gives the worst bound.
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