Section 7

Review

-	Multivariate:	Discrete	to	Continuous:
---	---------------	----------	----	-------------

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}\left(X = x, Y = y\right)$	$f_{X,Y}(x,y) \neq \mathbb{P}\left(X = x, Y = y\right)$
Joint range/support		
$\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \leq x, s \leq y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$\int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$
must have	$\Omega_{X,Y} = \Omega_X \times \Omega_Y$	$\Omega_{X,Y} = \Omega_X \times \Omega_Y$
Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation	$\mathbb{E}[X Y=y] = \sum_{x} x \cdot p_{X Y}(x y)$	$\mathbb{E}[X Y=y] = \int_{-\infty}^{\infty} x f_{X Y}(x y) dx$

- Law of Total Probability (Continuous): A is an event, and X is a continuous random variable with density function $f_X(x)$.

$$\mathbb{P}(A) = \int_{-\infty}^{\infty} \mathbb{P}(A \mid X = x) f_X(x) dx$$

- Conditional Expectation: Let X and Y be random variables. Then, the conditional expectation of X given Y = y is

$$\mathbb{E}[X|Y = y] = \sum_{x \in \Omega_X} x \cdot \mathbb{P} \left(X = x | Y = y \right) \qquad X \text{ discrete}$$

and for any event A,

$$\mathbb{E}[X|A] = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x|A)$$
 X discrete

Note that linearity of expectation still applies to conditional expectation: $\mathbb{E}[X + Y|A] = \mathbb{E}[X|A] + \mathbb{E}[Y|A]$

- Law of Total Expectation (Event Version): Let X be a random variable, and let events $A_1, ..., A_n$ partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i]\mathbb{P}(A_i)$$

- Law of Total Expectation (RV Version): Suppose X and Y are random variables. Then,

$$\mathbb{E}[X] = \sum_{y} \mathbb{E}[X|Y = y]p_Y(y) \qquad Y \text{ discrete r.v..}$$
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X|Y = y]f_Y(y)dy \qquad Y \text{ continuous r.v.}$$

- Markov's Inequality: Let X be a non-negative random variable, and $\alpha > 0$. Then,

$$\mathbb{P}(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha}$$

- Chebyshev's Inequality: Suppose Y is a random variable with $\mathbb{E}Y = \mu$ and $Var(Y) = \sigma^2$. Then, for any $\alpha > 0$,

$$\mathbb{P}(|Y - \mu| \ge \alpha) \le \frac{\sigma^2}{\alpha^2}$$

- (Multiplicative) Chernoff Bound: Let $X_1, X_2, ..., X_n$ be *independent* Bernoulli random variables. Let $X = \sum_{i=1}^n X_i$, and $\mu = \mathbb{E}X$. Then, for any $0 \le \delta \le 1$,

_

_

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge (1+\delta)\mu\right) \le \exp\left(-\frac{\delta^2\mu}{3}\right)$$
$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \le (1-\delta)\mu\right) \le \exp\left(-\frac{\delta^2\mu}{2}\right)$$

Task 1 – Content Review

a) Select one: For an event A and a continuous random variable X with density $f_X(x)$,

$$\bigcirc \mathbb{P}(A) = \int_{-\infty}^{\infty} \mathbb{P}(A \mid X = x) \mathbb{P}(X = x) dx$$
$$\bigcirc \mathbb{P}(A) = \int_{-\infty}^{\infty} \mathbb{P}(A \mid X = x) f_X(x) dx$$
$$\bigcirc \mathbb{P}(A) = \int_{-\infty}^{\infty} x f_X(x) dx$$
$$\bigcirc \mathbb{P}(A) = \int_{-\infty}^{\infty} \mathbb{P}(A \mid X = x) dx$$

- **b)** True or false: the Union Bound always gives a result in [0, 1].
- c) True or false: Markov's Inequality always gives a non-negative result.
- d) Suppose C and D are discrete random variables. Then $\mathbb{E}[C|D=d] =$

$$\bigcirc \sum_{d} dp_{D|C}(d|c)$$
$$\bigcirc \sum_{c} cp_{C|D}(c|d)$$
$$\bigcirc \int_{-\infty}^{\infty} cf_{c|d}dx$$
$$\bigcirc \frac{\mathbb{E}[C]}{\mathbb{E}[D]}$$

- e) Suppose X and Y are random variables and A is an event. Given that $\mathbb{E}[X|A] = 4$ and $\mathbb{E}[Y|A] = 10$, what is $\mathbb{E}[2X + Y/2|A]$?
 - 14
 18
 9
 13
- f) True or false: Chebyshev's Inequality can best be described as giving an upper bound on the distribution's right tail.

Joint Distributions

Task 2 – Who fails first?

Here's a question that commonly comes up in industry, but isn't immediately obvious. You have a disk with probability p_1 of failing each day. You have a CPU which independently has probability p_2 of failing each day. What is the probability that your disk fails *before* your CPU?

- a) Compute the probability by summing over the relevant part of the probability space.
- b) Try to provide an intuitive reason for the answer.
- c) Recompute the probability using the law of total probability, conditioning on the value of X_1 .

Task 3 – Continuous joint density

The joint density of X and Y is given by

$$f_{X,Y}(x,y) = \begin{cases} xe^{-(x+y)} & x > 0, y > 0\\ 0 & \text{otherwise.} \end{cases}$$

and the joint density of W and V is given by

$$f_{W,V}(w,v) = \begin{cases} 2 & 0 < w < v, 0 < v < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Are X and Y independent? Are W and V independent?

Conditional Distributions, Law of total expectation, Continuous LoTP

Task 4 – A Dysfunctional Family

Rick and his grandson Morty are set to meet at a certain time. Since their relationship is a little strained, neither of them wants to be there on time. Let $X \sim Unif(0, 10)$ be the amount of minutes Morty is going to be late. Rick has cameras around the meeting spot and will observe Morty's arrival time X = x. Then, he will arrive at the meeting spot Unif(x, 5x) minutes late. Let Y be the random variable indicating how late Rick will be.

- a) Using the above definitions determine f_X , $f_{Y|X}$, and f_{XY} . (You will want to determine f_{YX} and use it to determine f_{XY} .).
- **b)** Compute $\mathbb{E}[Y]$.

Task 5 – Law of Total Probability Review

- a) (Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one of $\Omega_U = \{0, \frac{1}{n}, \frac{2}{n}, ..., 1\}$ (notice this set has size n + 1). Let H be the event that the coin comes up heads. What is $\mathbb{P}(H)$?
- b) Now suppose $U \sim \text{Uniform}(0,1)$ has the *continuous* uniform distribution over the interval [0,1]. What is $\mathbb{P}(H)$?

Use the continuous version of the law of total probability: suppose E is an event, and X is a continuous random variable with density function $f_X(x)$. Then

$$\mathbb{P}(E) = \int_{-\infty}^{\infty} \mathbb{P}(E \mid X = x) f_X(x) dx$$

Task 6 – 3 points on a line

Three points X_1, X_2, X_3 are selected at random on a line L (continuous independent uniform distributions). What is the probability that X_2 lies between X_1 and X_3 ?

Task 7 – Lemonade Stand

Suppose I run a lemonade stand, which costs me \$100 a day to operate. I sell a drink of lemonade for \$20. Every person who walks by my stand either buys a drink or doesn't (no one buys more than one). If it is raining, n_1 people walk by my stand, and each buys a drink independently with probability p_1 . If it isn't raining, n_2 people walk by my stand, and each buys a drink independently with probability p_2 . It rains each day with probability p_3 , independently of every other day. Let X be my profit over the next week. In terms of n_1, n_2, p_1, p_2 and p_3 , what is $\mathbb{E}[X]$?

Task 8 – Trapped Miner

A miner is trapped in a mine containing 3 doors.

- D_1 : The 1st door leads to a tunnel that will take him to safety after 3 hours.
- D_2 : The 2^{nd} door leads to a tunnel that returns him to the mine after 5 hours.
- D_3 : The 3^{rd} door leads to a tunnel that returns him to the mine after a number of hours that is Binomial with parameters $(12, \frac{1}{3})$.

At all times, he is equally likely to choose any one of the doors. What is the expected number of hours for this miner to reach safety?

Task 9 – Elevator rides

[This is the problem we did in class.] The number X of people who enter an elevator on the ground floor is a Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where others get off, compute the expected number of stops the elevator will make before discharging all the passengers.

Tail Bounds

Task 10 – Tail bounds

Suppose $X \sim \text{Binomial}(6, 0.4)$. We will bound $\mathbb{P}(X \ge 4)$ using the tail bounds we've learned, and compare this to the true result.

a) Give an upper bound for this probability using Markov's inequality. Why can we use Markov's inequality?

b) Give a lower bound for P(X < 4) using Markov's inequality.

- c) Give an upper bound for this probability using Chebyshev's inequality. You may have to rearrange algebraically and it may result in a weaker bound.
- d) Give an upper bound for this probability using the Chernoff bound.
- e) Give an upper bound for $P(X \leq 2)$ using the Chernoff bound.
- f) Give the exact probability of $P(X \ge 4)$.

Task 11 – How many samples?

Let $X = X_1 + \ldots X_n$ be the sum of n independent $Poisson(\lambda)$ random variables. Recall that the Poisson distribution has expectation and variance both equal to λ and has the summation property that X is a $Poisson(n\lambda)$ random variable.

- a) How large a value of n would Chebyshev's inequality need to guarantee that $\mathbb{P}(X \leq \mathbb{E}[X]/2) \leq 0.01$?
- b) How large a value of n would Markov's inequality need to guarantee that $\mathbb{P}(X \ge \mathbb{E}[X]/2) \le 0.01$?

Task 12 – Claris's Late!

Suppose the probability Claris is late to teaching lecture on a given day is at most 0.01. Do not make any independence assumptions.

a) Use a Union Bound to bound the probability that Claris is late at least once over a 30-lecture quarter.

b) Use a Union Bound to bound the probability that Claris is never late over a 30-lecture quarter.

c) Use a Union Bound to bound the probability that Claris is late at least once over a 120-lecture quarter.

Task 13 – Exponential Tail Bounds

Let $X \sim \mathsf{Exp}(\lambda)$ and $k > 1/\lambda$. Recall that $\mathbb{E}[X] = \frac{1}{\lambda}$ and $\mathsf{Var}(X) = \frac{1}{\lambda^2}$.

- a) Use Markov's inequality to bound $P(X \ge k)$.
- **b)** Use Markov's inequality to bound P(X < k).
- c) Use Chebyshev's inequality to bound $P(X \ge k)$.
- d) What is the exact formula for $P(X \ge k)$?
- e) For $\lambda k \ge 3$, how do the bounds given in parts (a), (b), and (c) compare?