
CSE 312: Foundations of Computing II Summer 2024

Section 6 – Solutions
Review

- Discrete to Continuous:

Discrete Continuous
PMF/PDF pXpxq “ P pX “ xq fXpxq ‰ P pX “ xq “ 0

CDF FX pxq “
ř

tďx pXptq FX pxq “
şx

´8
fX ptq dt

Normalization
ř

x pXpxq “ 1
ş8

´8
fX pxq dx “ 1

Expectation ErXs “
ř

x xpXpxq ErXs “
ş8

´8
xfX pxq dx

LOTUS ErgpXqs “
ř

x gpxqpXpxq ErgpXqs “
ş8

´8
gpxqfX pxq dx

- Uniform: X „ Uniformpa, bq iff X has the following probability density function:

fX pxq “

"

1
b´a if x P ra, bs

0 otherwise

ErXs “ a`b
2 and VarpXq “

pb´aq
2

12 . This represents each real number from ra, bs to be equally likely.

- Exponential: X „ Exponentialpλq iff X has the following probability density function:

fX pxq “

"

λe´λx if x ě 0
0 otherwise

ErXs “ 1
λ and VarpXq “ 1

λ2 . FX pxq “ 1´e´λx for x ě 0. The exponential random variable is the continuous
analog of the geometric random variable: it represents the waiting time to the next event, where λ ą 0 is the
average number of events per unit time. Note that the exponential measures how much time passes until the
next event (any real number, continuous), whereas the Poisson measures how many events occur in a unit of
time (nonnegative integer, discrete). The exponential random variable X is memoryless:

for any s, t ě 0, P pX ą s ` t | X ą sq “ P pX ą tq

The geometric random variable also has this property.

- Normal (Gaussian, “bell curve”): X „ N pµ, σ2q iff X has the following probability density function:

fX pxq “
1

σ
?
2π

e´ 1
2

px´µq2

σ2 , x P R

ErXs “ µ and VarpXq “ σ2. The “standard normal” random variable is typically denoted Z and has mean 0
and variance 1: if X „ N pµ, σ2q, then Z “

X´µ
σ „ N p0, 1q. The CDF has no closed form, but we denote the

CDF of the standard normal as Φ pzq “ FZ pzq “ P pZ ď zq. Note from symmetry of the probability density
function about z “ 0 that: Φ p´zq “ 1 ´ Φpzq.

Here is the Standard normal table (link found on the course website).

- Standardizing: Let X be any random variable (discrete or continuous, not necessarily normal), with ErXs “ µ
and V arpXq “ σ2. If we let Y “

X´µ
σ , then ErY s “ 0 and V arpY q “ 1.

- Closure of the Normal Distribution: Let X „ N pµ, σ2q. Then, aX ` b „ N paµ ` b, a2σ2). That is, linear
transformations of normal random variables are still normal.
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- ‘Reproductive” Property of Normals: Let X1, . . . , Xn be independent normal random variables with ErXis “

µi and V arpXiq “ σ2
i . Let a1, . . . , anP R and bP R. Then,

X “

n
ÿ

i“1

paiXi ` bq „ N

˜

n
ÿ

i“1

paiµi ` bq,
n

ÿ

i“1

a2iσ
2
i

¸

There’s nothing special about the parameters – the important result here is that the resulting random variable
is still normally distributed.

- Central Limit Theorem (CLT): Let X1, . . . , Xn be iid random variables with ErXis “ µ and V arpXiq “ σ2.
Let X “

řn
i“1 Xi, which has ErXs “ nµ and V arpXq “ nσ2. Let X “ 1

n

řn
i“1 Xi, which has ErXs “ µ

and V arpXq “ σ2

n . X is called the sample mean. Then, as n Ñ 8, X approaches the normal distribution

N
´

µ, σ2

n

¯

. Standardizing, this is equivalent to Y “
X´µ
σ{

?
n

approaching N p0, 1q. Similarly, as n Ñ 8, X

approaches N pnµ, nσ2q and Y 1 “
X´nµ
σ

?
n

approaches N p0, 1q.

It is no surprise that X has mean µ and variance σ2{n – this can be done with simple calculations. The
importance of the CLT is that, for large n, regardless of what distribution Xi comes from, X is approximately
normally distributed with mean µ and variance σ2{n.

- Continuity Correction: This is a technique for getting a better estimate when applying CLT to the sum
X “

řn
i“1 Xi or the average of a set of random variables X1, . . . , Xn that are discrete. Specifically, if asked to

compute P pa ď X ď bq where a ď b are integers, you should compute P pa ´ 0.5 ď X ď b ` 0.5q so that the
width of the interval being integrated is the same as the number of terms you are summing over pb´a`1q. Note
that if you applying the CLT to sums/averages of continuous RVs instead, you should not apply the continuity
correction.

- Continuous Law of Total Probability:

Suppose that E is an event, and X is a continuous random variable with density function fXpxq. Then

PpEq “

ż 8

´8

PpE | X “ xqfXpxqdx

Task 1 – Content Review

a) True or False: For any random variable X, PpX “ 5q “ PpX ´ 5 “ 0q.

True. We can think of X ´ 5 as another random variable where we take the output of X and
subtract five from it. Then the probability that X ´ 5 is zero is identical to the probability that
X is originally five.

b) True or False: For some continuous random variable X, PpX ď 5q ‰ PpX ă 5q.

False. Note that PpX ď 5q “ PpX “ 5q ` PpX ă 5q. But the first term is zero, so the
probabilities are exactly equal. This holds for every continous random variable.

c) True or False: Let X „ N pµ, σ2q and a, b P R. Then aX ` b „ N paµ ` b, a2σ2q.

True. This follows by the closure of the normal distribution.

d) Select one: For an event A and a continuous random variable X with density fXpxq,

PpAq “
ş8

´8
PpA | X “ xqPpX “ xqdx
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PpAq “
ş8

´8
PpA | X “ xqfXpxqdx

PpAq “
ş8

´8
xfXpxqdx

PpAq “
ş8

´8
PpA | X “ xqdx

The second choice follows directly by definition of continuous law of total probability.

e) Select one: Suppose we have n independent and identically distributed random variables X1, X2, . . . , Xn,
each with mean µ and variance σ2. Let X “

řn
i“1 X. Then as n grows large, the Central Limit Theorem

tells us that X behaves similarly to which normal distribution?

X „ N pnµ, nσ2q

X „ N pµ, nσ2q

X „ N pnµ, σ2q

X „ N pnµ, n2σ2q

The first one. By linearity of expectation, EX “ nµ. Now since each of the rvs are independent,
we may say that Var ppqXq “ nσ2. Then as n grows large, X behaves similarly to a normal
random variable with the same expectation and variance as itself.

f) Select one: Given two discrete random variables X and Y , the joint CDF is

FX,Y px, yq “
ř

tăx pX,Y pt, yq

FX,Y px, yq “
ř

săy pX,Y px, sq

FX,Y px, yq “
ř

tăx

ř

săy pX,Y pt, sq

FX,Y px, yq “ pX,Y px, yq

The third answer follows directly from the definition of multivariate / joint distributions.

Task 2 – The exponential distribution is memoryless (problem from lecture)

Show that the exponential distribution is memoryless. Specifically, suppose that X is exponential with parameter
λ. Show that P pX ą t ` s | X ą sq “ P pX ą tq.

We have

P pX ą t ` s|X ą sq “
P pX ą t ` s X X ą sq

P pX ą sq
“

P pX ą t ` sq

P pX ą sq

“
e´λpt`sq

e´λs
“ e´λt “ 1 ´ FXptq

“ PpX ą tq .

Task 3 – More practice with exponentials (problem from lecture)

The time it takes to check someone out at a grocery store is exponential with an expected value of 10 minutes.
Suppose that when you arrive at a grocery store, there is one person in the middle of being served. What is the
probability that you will have to wait between 10 and 20 minutes before that person is done being served?
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Since the expected value of an exponential random variable is 1{λ, we have 1{λ “ 10 minutes, so
λ “ 1{10. In addition, since the exponential distribution is memoryless (that is, it doens’t matter
how long the person being served has already been there), the time that you will have to wait is
exponential with parameter 1{10. Thus

P p10 ď T ď 20q “

ż 20

10

1

10
e´x{10 dx “ e´1 ´ e´2 .

Task 4 – Will the battery last?

The owner of a car starts on a 5000 mile road trip. Suppose that the number of miles that the car will run before
its battery wears out is exponentially distributed with expectation 10,000 miles. After successfully driving for 2000
miles on the trip without the battery wearing out, what is the probability that she will be able to complete the
trip without replacing the battery?

Let N be a r.v. denoting the number of miles until the battery wears out. Then N „ expp10, 000´1q,
because N measures the ”time” (in this case miles) before an occurrence (the battery wears out) with
expectation 10,000. Since this is an exponential distribution, and the expectation of an exponential
distribution is 1

λ , λ “ 1
10,000 . Therefore, via the property of memorylessness of the exponential

distribution:

PpN ě 5000 | N ě 2000q “ PpN ě 3000q “ 1 ´ PpN ď 3000q “ 1 ´

´

1 ´ e´ 3000
10000

¯

« 0.741

Task 5 – Batteries and exponential distributions (from Section 6)

Let X1, X2 be independent exponential random variables, where Xi has parameter λi, for 1 ď i ď 2. Let
Y “ minpX1, X2q.

a) Show that Y is an exponential random variable with parameter λ “ λ1 ` λ2. Hint: Start by computing
PpY ą yq. Two random variables with the same CDF have the same pdf. Why?

We start with computing PpY ą yq by substituting in the definition of Y :

PpY ą yq “ PpmintX1, X2u ą yq .

The probability that the minimum of two values is above a value is the chance that both of
them are above that value. From there, we can separate them further because X1 and X2 are
independent.

PpX1 ą y X X2 ą yq “ PpX1 ą yqPpX2 ą yq “ e´λ1ye´λ2y

“ e´pλ1`λ2qy “ e´λy .

So FY pyq “ 1 ´ PpY ą yq “ 1 ´ e´λy and fY pyq “ λe´λy so Y „ Exppλq, since this is the
same CDF and PDF as an exponential distribution with parameter λ “ λ1 ` λ2.

b) What is P pX1 ă X2q? (Use the continuous version of the law of total probability, conditioning on the
probability that X1 “ x.)

By the law of total probability,

PpX1 ă X2q “

ż 8

0

PpX1 ă X2 | X1 “ xqfX1
pxqdx “

ż 8

0

PpX2 ą xqλ1e
´λ1x dx “

ż 8

0

e´λ2xλ1e
´λ1x dx “

λ1

λ1 ` λ2
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c) You have a digital camera that requires two batteries to operate. You purchase n batteries, labelled
1, 2, . . . , n, each of which has a lifetime that is exponentially distributed with parameter λ, independently of
all other batteries. Initially, you install batteries 1 and 2. Each time a battery fails, you replace it with the
lowest-numbered unused battery. At the end of this process, you will be left with just one working battery.
What is the expected total time until the end of the process? Justify your answer.

Let T be the time until the end of the process. We are trying to find ErT s. T “ Y1 ` ...` Yn´1

where Yi is the time until we have to replace a battery from the ith pair. The reason it there
are only n ´ 1 RVs in the sum is because there are n ´ 1 times where we have two batteries
and wait for one to fail. By part (a), the time for one to fail is the min of exponentials, so
Yi „ Exponentialp2λq. Hence the expected time for the first battery to fail is 1

2λ . By linearity

and memorylessness, ErT s “
řn´1

i“1 ErY1s “ n´1
2λ .

d) In the scenario of the previous part, what is the probability that battery i is the last remaining battery as
a function of i? (You might want to use the memoryless property of the exponential distribution that has
been discussed.)

If there are two batteries i, j in the flashlight, by part (b), the probability each outlasts each
other is 1{2. Hence, the last battery n has probability 1{2 of being the last one remaining. The
second to last battery n ´ 1 has to beat out the previous battery and the nth, so the probability
it lasts the longest is p1{2q2 “ 1{4. Work down inductively to get that the probability the ith

is the last remaining is p1{2qn´i`1 for i ě 3. Finally the first two batteries share the remaining
probability as they start at the same time, with probability p1{2qn´1 each.

Task 6 – Grading on a curve

In some classes (not CSE classes) an examination is regarded as being good (in the sense of determining a valid
spread for those taking it) if the test scores of those taking it are well approximated by a normal density function.
The instructor often uses the test scores to estimate the normal parameters µ and σ2 and then assigns a letter
grade of A to those whose test score is greater than µ ` σ, B to those whose score is between µ and µ ` σ, C
to those whose score is between µ ´ σ and µ, D to those whose score is between µ ´ 2σ and µ ´ σ and F to
those getting a score below µ´ 2σ. If the instructor does this and a student’s grade on the test really is normally
distributed with mean µ and variance σ2, what is the probability that student will get each of the possible grades
A,B,C,D and F? (Use a table for anything you can’t calculate.)

We can solve for each of these probabilities by standardizing the normal curve and then looking up
each bound in the Z-table. Let X be the students score on the test. Then we have

PpAq “ PpX ě µ ` σq “ P
ˆ

X ´ µ

σ
ě 1

˙

“ 1 ´ P
ˆ

X ´ µ

σ
ă 1

˙

By the closure properties of the normal random variable, X´µ
σ is distributed as a normal random

variable with mean 0 and variance 1. Since this is the standard normal, we can plug it into our
Φ-table to get the following:

PpAq “ 1 ´ Φp1q “ 1 ´ 0.84134 “ 0.15866

The other probabilities can be found using a similar approach:

PpBq “ Ppµ ă X ă µ ` σq “ Φp1q ´ Φp0q “ 0.34134

PpCq “ Ppµ ´ σ ă X ă µq “ Φp0q ´ Φp´1q “ 0.34134

PpDq “ Ppµ ´ 2σ ă X ă µ ´ σq “ Φp´1q ´ Φp´2q “ 0.13591

PpF q “ PpX ă µ ´ 2σq “ Φp´2q “ 0.02275
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Task 7 – Normal questions at the table (from Section 6)

a) Let X be a normal random with parameters µ “ 10 and σ2 “ 36. Compute Pp4 ă X ă 16q.

Let X´10
6 “ Z. By the scale and shift properties of normal random variables Z „ N p0, 1q.

Pp4 ă X ă 16q “ P
ˆ

4 ´ 10

6
ă

X ´ 10

6
ă

16 ´ 10

6

˙

“ Pp´1 ă Z ă 1q

“ Φp1q ´ Φp´1q “ 2Φp1q ´ 1 “ 0.68268

b) Let X be a normal random variable with mean 5. If PpX ą 9q “ 0.2, approximately what is VarpXq?

Let σ2 “ VarpXq. Then,

PpX ą 9q “ P
ˆ

X ´ 5

σ
ą

9 ´ 5

σ

˙

“ 1 ´ Φ

ˆ

4

σ

˙

“ 0.2

So, Φ
`

4
σ

˘

“ 0.8. Looking up the phi values in reverse lets us undo the Φ function, and gives us
4
σ “ 0.845. Solving for σ we get σ « 4.73, which means that the variance is about 22.4.

c) Let X be a normal random variable with mean 12 and variance 4.
Find the value of c such that PpX ą cq “ 0.10.

PpX ą cq “ P
ˆ

X ´ 12

2
ą

c ´ 12

2

˙

“ 1 ´ Φ

ˆ

c ´ 12

2

˙

“ 0.1

So, Φ
`

c´12
2

˘

“ 0.9. Looking up the phi values in reverse lets us undo the Φ function, and gives
us c´12

2 “ 1.29. Solving for c we get c « 14.58.

Central Limit Theorem Problems
The next few problems are CLT focused problems. Here’s a general template for that! Sometimes we’ll be trying
to solve for the probability of something (e.g., P pX ď 10q, and sometimes, we’ll be trying to find a value of some
parameter that will allow for the probability to be in a certain range (e.g., P pX ď 10q ď 0.2q. Regardless, we
still will want to apply CLT on X (the only difference is that we may be solving for different things).

1. Setup the problem - write event you are interested in, in terms of sum of random variables. (what do we want
to solve for/what is the probability we want to be true?)

- Write the random variable we’re interested in as a sum of i.i.d., random variables

- Apply CLT toX “ X1`X2`...`Xn (we can approximateX as a normal random variable Y „ Npµ, σ2q)

- Write the probability we’re interested in

2. If the RVs are discrete, apply continuity correction.

3. Normalize RV to have mean 0 and standard deviation 1: Z “
Y ´µ
σ

4. Replace RV in probability expression with Z „ Np0, 1q

5. Write in terms of Φpzq “ P pZ ď zq

6. Look up in the Phi table (or a reverse Phi table lookup if we’re for a value of z that gives a certain probability)

Task 8 – Round-off error
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Let X be the sum of 100 real numbers, and let Y be the same sum, but with each number rounded to the nearest
integer before summing. If the roundoff errors are independent and uniformly distributed between -0.5 and 0.5,
what is the approximate probability that |X ´ Y | ą 3?

Let X “
ř100

i“1 Xi, and Y “
ř100

i“1 rpXiq, where rpXiq is Xi rounded to the nearest integer. Then,
we have

X ´ Y “

100
ÿ

i“1

Xi ´ rpXiq

Note that each Xi ´ rpXiq is simply the round off error, which is distributed as Unifp´0.5, 0.5q.
Since X ´ Y is the sum of 100 i.i.d. random variables with mean µ “ 0 and variance σ2 “ 1

12 ,
X ´Y « W „ N p0, 100

12 q by the Central Limit Theorem. For notational convenience let Z „ N p0, 1q

Pp|X ´ Y | ą 3q « Pp|W | ą 3q rCLTs

“ PpW ą 3q ` PpW ă ´3q rNo overlap between W ą 3 and W ă ´3s

“ 2 PpW ą 3q rSymmetry of normals

“ 2 P

˜

W
a

100{12
ą

3
a

100{12

¸

« 2 PpZ ą 1.039q rStandardize W s

“ 2 p1 ´ Φp1.039qq « 0.29834

Task 9 – Tweets

A prolific Twitter user tweets approximately 350 tweets per week. Let’s assume for simplicity that the tweets are
independent, and each consists of a uniformly random number of characters between 10 and 140. (Note that this
is a discrete uniform distribution.) Thus, the central limit theorem (CLT) implies that the number of characters
tweeted by this user is approximately normal with an appropriate mean and variance. Assuming this normal
approximation is correct, estimate the probability that this user tweets between 26,000 and 27,000 characters in
a particular week. (This is a case where continuity correction will make virtually no difference in the answer, but
you should still use it to get into the practice!).

Let X be the total number of characters tweeted by a twitter user in a week. Let Xi „ Unifp10, 140q

be the number of characters in the ith tweet (since the start of the week). Since X is the sum of 350
i.i.d. rvs with mean µ “ 75 and variance σ2 “ 1430, X « N „ N p350 ¨ 75, 350 ¨ 1430q. Thus,

Pp26, 000 ď X ď 27, 000q « Pp26, 000 ď N ď 27, 000q

Now, we apply continuity correction:

Pp26, 000 ď N ď 27, 000q « Pp25, 999.5 ď N ď 27, 000.5q

Standardizing this gives the following formula

Pp25, 999.5 ď N ď 27, 000.5q « P
ˆ

´0.3541 ď
N ´ 350 ¨ 75
?
350 ¨ 1430

ď 1.0608

˙

“ P p´0.3541 ď Z ď 1.0608q

“ PpZ ď 1.0608q ´ PpZ ď ´0.3541q

“ Φp1.0608q ´ Φp´0.3541q

« 0.4923

So the probability that this user tweets between 26,000 and 27,000 characters in a particular week is
approximately 0.4923.
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Task 10 – Confidence interval

Suppose that X1, . . . , Xn are i.i.d. samples from a normal distribution with unknown mean µ and variance 36.
How big does n need to be so that µ is in

rX ´ 0.11, X ` 0.11s

with probability at least 0.97?

Recall that

X “
1

n

n
ÿ

i“1

Xi.

You may use the fact that Φ´1p0.985q “ 2.17.

Our goal is to find n such that µ lies within 0.11 of X̄ 97% of the time. This is equivalent to finding
n such that the probability that µ lies outside the range is less than 3%.

Pp|X̄ ´ µ| ą 0.11q ď 0.03

Let us define Z “
X̄´µ
σ . We can solve for σ by using the Properties of Variance. Since

X̄ “
1

n

n
ÿ

i“1

Xi

we can say that

VarpX̄q “ Varp
1

n

n
ÿ

i“1

Xiq

Using the Properties of Variance and the fact that Xi’s are i.i.d., VarpX̄q “ 1
n2 ¨ n ¨ 36 “ 36

n , so
σ “ 6?

n
.

Pp|X̄ ´ µ| ą 0.11q ď 0.03

Pp|Z| ¨ σ ą 0.11q ď 0.03 rDefinition of Zs

P
ˆ

|Z| ą
0.11

6

?
n

˙

ď 0.03

P
ˆ

Z ă ´
0.11

6

?
n

˙

ď 0.015 rSymmetry of Normal Dist.s

Φ

ˆ

´
0.11

6

?
n

˙

ď 0.015 rCDF of Standard Norm.s

´
0.11

6

?
n ď ´Φ´1p0.985q

?
n ě

6 ¨ Φ´1p0.985q

0.11

n ě

ˆ

6 ¨ Φ´1p0.985q

0.11

˙2

« 14009.95

Then n must be at least 14010.

8



Task 11 – Normal Approximation of a Sum

Imagine that we are trying to transmit a signal. During the transmission, there are 100 sources independently
making low noise. Each source produces an amount of noise that is uniformly distributed between a “ ´1 and
b “ 1. If the total amount of noise is greater than 10 or less than ´10, then it corrupts the signal. However, if
the absolute value of the total amount of noise is under 10, then it is not a problem. What is the approximate
probability that the absolute value of the total amount of noise from the 100 signals is less than 10?

Let S be the total amount of noise. We want to find P p|S| ă 10q “ P p´10 ă S ă 10q. Let Xi be
the noise from source i. Then, we have

S “

100
ÿ

i“1

Xi.

Since the Xi are uniformly distributed, we have that ErXis “ a`b
2 “ 0 and Var pXiq “

pb´aq
2

12 “ 1
3 .

Since the Xi are i.i.d, by the Central Limit Theorem, we find that S is approximately distributed
according to N

`

0, 100 ¨ 1
3

˘

. Now, we standardize to get

Pp´10 ă S ă 10q “ P

˜

´10 ´ 0
a

100{3
ă

S ´ 0
a

100{3
ă

10 ´ 0
a

100{3

¸

“ 2Φp
?
3q ´ 1 « 0.91

Task 12 – Joint PMF’s

Suppose X and Y have the following joint PMF:

X/Y 1 2 3
0 0 0.2 0.1
1 0.3 0 0.4

a) Identify the range of X (ΩX), the range of Y (ΩY ), and their joint range (ΩX,Y ).

ΩX “ t0, 1u, ΩY “ t1, 2, 3u, and ΩX,Y “ tp0, 2q, p0, 3q, p1, 1q, p1, 3qu

b) Find the marginal PMF for X, pXpxq for x P ΩX .

Note that ΩX “ t0, 1u.

pXp0q “
ÿ

y

pX,Y p0, yq “ 0 ` 0.2 ` 0.1 “ 0.3

pXp1q “ 1 ´ pXp0q “ 0.7

c) Find the marginal PMF for Y , pY pyq for y P ΩY .

Note that ΩY “ t1, 2, 3u.

pY p1q “
ÿ

x

pX,Y px, 1q “ 0 ` 0.3 “ 0.3

pY p2q “
ÿ

x

pX,Y px, 2q “ 0.2 ` 0 “ 0.2

pY p3q “
ÿ

x

pX,Y px, 3q “ 0.1 ` 0.4 “ 0.5
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d) Are X and Y independent? Why or why not?

X and Y are not independent. Recall that a necessary condition for X and Y to be independent
is that ΩX,Y “ ΩX ˆ ΩY . The joint range ΩX,Y does not satisfy this criteria, so it cannot be
independent.

e) Find ErX3Y s.

Note that X3 “ X since X takes values in t0, 1u.

ErX3Y s “ ErXY s “
ÿ

px,yqPΩX,Y

xypX,Y px, yq “ 1 ¨ 1 ¨ 0.3 ` 1 ¨ 3 ¨ 0.4 “ 1.5

Task 13 – Joint PMF’s

Suppose X and Y have the following joint PMF:

X/Y 1 2 3
0 0 0.2 0.1
1 0.3 0 0.4

a) Identify the range of X (ΩX), the range of Y (ΩY ), and their joint range (ΩX,Y ).

ΩX “ t0, 1u, ΩY “ t1, 2, 3u, and ΩX,Y “ tp0, 2q, p0, 3q, p1, 1q, p1, 3qu

b) Find the marginal PMF for X, pXpxq for x P ΩX .

Note that ΩX “ t0, 1u.

pXp0q “
ÿ

y

pX,Y p0, yq “ 0 ` 0.2 ` 0.1 “ 0.3

pXp1q “ 1 ´ pXp0q “ 0.7

c) Find the marginal PMF for Y , pY pyq for y P ΩY .

Note that ΩY “ t1, 2, 3u.

pY p1q “
ÿ

x

pX,Y px, 1q “ 0 ` 0.3 “ 0.3

pY p2q “
ÿ

x

pX,Y px, 2q “ 0.2 ` 0 “ 0.2

pY p3q “
ÿ

x

pX,Y px, 3q “ 0.1 ` 0.4 “ 0.5

d) Are X and Y independent? Why or why not?

X and Y are not independent. Recall that a necessary condition for X and Y to be independent
is that ΩX,Y “ ΩX ˆ ΩY . The joint range ΩX,Y does not satisfy this criteria, so it cannot be
independent.

e) Find ErX3Y s.

10



Note that X3 “ X since X takes values in t0, 1u.

ErX3Y s “ ErXY s “
ÿ

px,yqPΩX,Y

xypX,Y px, yq “ 1 ¨ 1 ¨ 0.3 ` 1 ¨ 3 ¨ 0.4 “ 1.5

Task 14 – Do You “Urn” to Learn More About Probability?

Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let
Xi “ 1 if the i-th ball selected is white and let it be equal to 0 otherwise. Give the joint probability mass function
of

a) X1, X2

Here is one way of defining the joint pmf of X1, X2

pX1,X2p1, 1q “ P pX1 “ 1qP pX2 “ 1 | X1 “ 1q “
5

13
¨
4

12
“

20

156

pX1,X2p1, 0q “ P pX1 “ 1qP pX2 “ 0 | X1 “ 1q “
5

13
¨
8

12
“

40

156

pX1,X2p0, 1q “ P pX1 “ 0qP pX2 “ 1 | X1 “ 0q “
8

13
¨
5

12
“

40

156

pX1,X2
p0, 0q “ P pX1 “ 0qP pX2 “ 0 | X1 “ 0q “

8

13
¨
7

12
“

56

156

b) X1, X2, X3

Instead of listing out all the individual probabilities, we could write a more compact formula for
the pmf. In this problem, the denominator is always P p13, kq, where k is the number of random
variables in the joint pmf. And the numerator is P p5, iq times P p8, jq where i and j are the
number of 1s and 0s, respectively.

If we wish to compute pX1,X2,X3
px1, x2, x3q, then the number of 1s (i.e., white balls) is x1 `

x2 ` x3, and the number of 0s (i.e., red balls) is p1 ´ x1q ` p1 ´ x2q ` p1 ´ x3q. Then, we can
write the pmf as follows:

pX1,X2,X3
px1, x2, x3q “

10!

13!
¨

5!

p5 ´ x1 ´ x2 ´ x3q!
¨

8!

p5 ` x1 ` x2 ` x3q!

Task 15 – Trinomial Distribution

A generalization of the Binomial model is when there is a sequence of n independent trials, but with three
outcomes, where Ppoutcome iq “ pi for i “ 1, 2, 3 and of course p1 ` p2 ` p3 “ 1. Let Xi be the number of
times outcome i occurred for i “ 1, 2, 3, where X1 ` X2 ` X3 “ n. Find the joint PMF pX1,X2,X3px1, x2, x3q

and specify its value for all x1, x2, x3 P R.

Are X1 and X2 independent?

In a similar argument with the binomial PMF, we have

pX1,X2,X3
px1, x2, x3q “

ˆ

n

x1

˙ˆ

n ´ x1

x2

˙ˆ

n ´ x1 ´ x2

x3

˙

px1
1 px2

2 px3
3 .
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This may also be interpreted as multinomial coefficients (reference), and so we may rewrite as

pX1,X2,X3
px1, x2, x3q “

ˆ

n

x1, x2, x3

˙

px1
1 px2

2 px3
3 “

n!

x1!x2!x3!
px1
1 px2

2 px3
3 ,

where x1 ` x2 ` x3 “ n and are nonnegative integers.

X1 and X2 are not independent. For example PpX1 “ nq ą 0 and PpX2 “ nq ą 0, but PpX1 “

n,X2 “ nq “ 0. In other words, ΩX1,X2,X3 ‰ ΩX1 ˆ ΩX2 ˆ ΩX3 , which is a necessary condition for
independence.

Task 16 – Successes

Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X1 be the
number of failures preceding the first success, and let X2 be the number of failures after the first success but
preceding the second success. Find the joint pmf of X1 and X2. Write an expression for Er

?
X1X2s. You can

leave your answer in the form of a sum.

In order for X1 to take on a particular value, say x1, it must have x1 failures until the first success,
i.e., the next trial is a success. To that end, for X1 and X2 to take on two particular values x1 and
x2, there must be x1 failures followed by one success, and then x2 failures followed by one success.
Since the Bernoulli trials are independent, the joint pmf is

pX1,X2
px1, x2q “ p1 ´ pqx1p ¨ p1 ´ pqx2p “ p1 ´ pqx1`x2p2

for px1, x2q P ΩX1,X2
“ t0, 1, 2, . . .u ˆ t0, 1, 2, . . .u. By the definition of expectation and LOTUS,

Er
a

X1X2s “
ÿ

px1,x2qPΩX1,X2

?
x1x2 ¨ pX1,X2px1, x2q “

ÿ

px1,x2qPΩX1,X2

?
x1x2 ¨ p1 ´ pqx1`x2p2 .

Task 17 – Who fails first?

Here’s a question that commonly comes up in industry, but isn’t immediately obvious. You have a disk with
probability p1 of failing each day. You have a CPU which independently has probability p2 of failing each day.
What is the probability that your disk fails before your CPU?

a) Compute the probability by summing over the relevant part of the probability space.

We model the problem by considering two Geometric random variables and deriving the probability
that one is smaller than the other. Let X1 „ Geometricpp1q. Let X2 „ Geometricpp2q. Assume

12
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X1 and X2 are independent. We want P pX1 ă X2q.

P pX1 ă X2q “

8
ÿ

k“1

8
ÿ

k2“k`1

pX1,X2pk, k2q

“

8
ÿ

k“1

8
ÿ

k2“k`1

pX1
pkq ¨ pX2

pk2q (by independence)

“

8
ÿ

k“1

8
ÿ

k2“k`1

p1 ´ p1qk´1p1 ¨ p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1

8
ÿ

k2“k`1

p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1p1 ´ p2qk
8
ÿ

k2“1

p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1p1 ´ p2qk ¨ 1

“ p1p1 ´ p2q

8
ÿ

k“1

rp1 ´ p2qp1 ´ p1qsk´1

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

b) Try to provide an intuitive reason for the answer.

Think about X1 and X2 in terms of coin flips. Notice that all the flips are irrelevant until the final
flip, since before the final flip, both the X1 coin and the X2 coin only yield tails. P pX1 ă X2q is
the probability that on the final flip, where by definition at least one coin comes up heads, it is
the case that the X1 coin is heads and the X2 coin is tails. So we’re looking for the probability
that the X1 coin produces a heads and the X2 coin produces a tails, conditioned on the fact that
they’re not both tails, which is derived as:

P pCoin 1 “ H and Coin 2 “ T | not both T q “
P pCoin 1 “ H and Coin 2 “ T q

P pnot both T q

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

Another way to approach this problem is to use conditioning. Recall that in computing the
probability of an event, we saw in Chapter 2 that it is often useful to condition on other events.
We can use this same idea in computing probabilities involving random variables, because X “ k
and Y “ y are just events.

c) Recompute the probability using the law of total probability, conditioning on the value of X1.

Again, let X1 „ Geometricpp1q and X2 „ Geometricpp2q, where X1 and X2 are independent.
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Then

P pX1 ă X2q “

8
ÿ

k“1

P pX1 ă X2 | X1 “ kq ¨ P pX1 “ kq

“

8
ÿ

k“1

P pk ă X2 | X1 “ kq ¨ P pX1 “ kq

“

8
ÿ

k“1

P pX2 ą kq ¨ P pX1 “ kq (by independence)

“

8
ÿ

k“1

p1 ´ p2qk ¨ p1 ´ p1qk´1 ¨ p1

“ p1p1 ´ p2q

8
ÿ

k“1

rp1 ´ p2qp1 ´ p1qsk´1

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

Task 18 – Continuous joint density

The joint density of X and Y is given by

fX,Y px, yq “

#

xe´px`yq x ą 0, y ą 0

0 otherwise.

and the joint density of W and V is given by

fW,V pw, vq “

#

2 0 ă w ă v, 0 ă v ă 1

0 otherwise.

Are X and Y independent? Are W and V independent?

For two random variables X,Y to be independent, we must have fX,Y px, yq “ fXpxqfY pyq for all
x P ΩX , y P ΩY . Let’s start with X and Y by finding their marginal PDFs. By definition, and using
the fact that the joint PDF is 0 outside of y ą 0, we get:

fXpxq “

ż 8

0

xe´px`yqdy “ e´xx

We do the same to get the PDF of Y , again over the range x ą 0:

fY pyq “

ż 8

0

xe´px`yqdx “ e´y

Since e´xx ¨ e´y “ xe´x´y “ xe´px`yq for all x, y ą 0, X and Y are independent.

We can see thatW and V are not independent simply by observing that ΩW “ p0, 1q and ΩV “ p0, 1q,
but ΩW,V is not equal to their Cartesian product. Specifically, looking at their range of fW,V pw, vq.
Graphing it with w as the ”x-axis” and v as the ”y-axis”, we see that :

section8˙plot.png
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The shaded area is where the joint pdf is strictly positive. Looking at it, we can see that it is not
rectangular, and therefore it is not the case that ΩW,V “ ΩW

Ś

ΩV . Remember, the joint range
being the Cartesian product of the marginal ranges is not sufficient for independence, but it is neces-
sary. Therefore, this is enough to show that they are not independent.

Task 19 – Grades and homework turn-in time

Suppose we’re currently trying to find a relationship between the time a student turns in their homework and the
grade that they receive on the respective homework. Let T denote the amount of time prior to the deadline that
the homework is submitted. We have observed that no student submits the homework more than 2 days earlier
than the deadline, and also no student submits their assignment late, so 0 ď T ď 2. Now let G be a random
variable, indicating the percentage that the student receives on the homework assignment, that is, 0 ď G ď 1.
Suppose G and T are continuous random variables, and their joint pdf is given by

fG,T pg, tq “

#

9
10g

2t ` 1
5 when 0 ď g ď 1 and 0 ď t ď 2

0 otherwise .

For both parts, round your solution to three decimal places.

a) What is the probability that a randomly selected student gets a grade above 50% on the homework?

We are looking for PpG ą 0.5q. To do this, we must first compute the marginal density function
fGpgq. Applying by definition,

fGpgq “

ż 8

´8

fG,T pg, tq dt

“

ż 2

0

fG,T pg, tq dt “

ż 2

0

9

10
g2t `

1

5
dt “

ˆ

9

10

1

2
t2g2 `

1

5
t

˙
ˇ

ˇ

ˇ

ˇ

2

0

“
9

5
g2 `

2

5
.

Then

PpG ą 0.5q “

ż 8

0.5

fGpgq dg “

ż 1

0.5

9

5
g2 `

2

5
dg “

29

40
“ 0.725 .

b) What is the probability that a student gets a grade above 50%, given that the student submitted less than
a day before the deadline?

We are looking for

PpG ą 0.5 | T ă 1q “
PpG ą 0.5 X T ă 1q

PpT ă 1q
,

which follows by the definition of conditional probability. The numerator can be computed using
the joint pdf. However, the denominator needs us to calculate the marginal pdf. We can follow
a similar approach to the previous part and get

fT ptq “

ż 1

0

fG,T pg, tq dg “

ż 1

0

9

10
g2t `

1

5
dg “

3

10
t `

1

5
.

Thus,

PpG ą 0.5 | T ă 1q “

ş1

0.5

ş1

0
fG,T pg, tq dt dg

ş1

0
fT ptq dt

“

ş1

0.5

ş1

0
9
10g

2t ` 1
5 dt dg

ş1

0
3
10 t ` 1

5 dt
« 0.661 .
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