
CSE 312: Foundations of Computing II Summer 2024

Section 5 – Solutions
Review

- Variance. Var pXq “ ErpX ´ ErXsq2s “ ErX2s ´ ErXs2 Var paX ` bq “ a2Var pXq.

Notice that since this is an expectation of a non-negative random variable (pX ´ µq
2), variance is always

non-negative.

- Independence. Two random variables X and Y are independent if @x P ΩX ,@y P ΩY , the following holds
true: P pX “ x X Y “ yq “ P pX “ xqP pY “ yq.

When two random variables are independent, we have ErXY s “ ErXsErY s (the converse is not necessarily
true).

- Variance and Independence. For any two independent random variablesX and Y , Var pX ` Y q “

This depends on independence, whereas linearity of expectation always holds. Note that this combined with
the above shows that @a, b, c P R and if X is independent of Y , VarpaX ` bY ` cq “ a2VarpXq ` b2VarpY q.

Var pX ` Y q “ Var pXq ` V arpY q

- i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) iff they are
independent and have the same probability mass function.

- Uniform: X „ Uniformpa, bq (Unifpa, bq for short), for integers a ď b, iff X has the following probability mass
function:

pX pkq “
1

b ´ a ` 1
, k “ a, a ` 1, . . . , b

ErXs “ a`b
2 and VarpXq “

pb´aqpb´a`2q

12 . This represents each integer from ra, bs being equally likely. For
example, a single roll of a fair die is Uniformp1, 6q.

- Bernoulli (or indicator): X „ Bernoullippq (Berppq for short) iff X has the following probability mass function:

pX pkq “

"

p, k “ 1
1 ´ p, k “ 0

ErXs “ p and VarpXq “ pp1 ´ pq. An example of a Bernoulli r.v. is one flip of a coin with P pheadq “ p.

- Binomial: X „ Binomialpn, pq (Binpn, pq for short) iff X is the sum of n iid Bernoullippq random variables. X
has probability mass function

pX pkq “

ˆ

n

k

˙

pk p1 ´ pq
n´k

, k “ 0, 1, . . . , n

ErXs “ np and VarpXq “ npp1 ´ pq. An example of a Binomial r.v. is the number of heads in n independent
flips of a coin with P pheadq “ p. Note that Binp1, pq ” Berppq. As n Ñ 8 and p Ñ 0,with np “ λ,
then Bin pn, pq Ñ Poipλq. If X1, . . . , Xn are independent Binomial r.v.’s, where Xi „ BinpNi, pq, then X “

X1 ` . . . ` Xn „ BinpN1 ` . . . ` Nn, pq.

- Geometric: X „ Geometricppq (Geoppq for short) iff X has the following probability mass function:

pX pkq “ p1 ´ pq
k´1

p, k “ 1, 2, . . .

ErXs “ 1
p and VarpXq “

1´p
p2 . An example of a Geometric r.v. is the number of independent coin flips up to

and including the first head, where P pheadq “ p.
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- Poisson: X „ Poissonpλq (Poipλq for short) iff X has the following probability mass function:

pX pkq “ e´λλ
k

k!
, k “ 0, 1, . . .

ErXs “ λ and VarpXq “ λ. An example of a Poisson r.v. is the number of people born during a particular
minute, where λ is the average birth rate per minute. If X1, . . . , Xn are independent Poisson r.v.’s, where
Xi „ Poipλiq, then X “ X1 ` . . . ` Xn „ Poipλ1 ` . . . ` λnq.

- Hypergeometric: X „ HyperGeometricpN,K, nq (HypGeopN,K, nq for short) iff X has the following proba-
bility mass function:

pX pkq “

`

K
k

˘`

N´K
n´k

˘

`

N
n

˘ , where n ď N, k ď minpK,nq and k ě maxp0, n ´ pN ´ Kqq.

We have ErXs “ nK
N . (VarpXq “ n ¨

KpN´KqpN´nq

N2p2N´1q
which is not very memorable.) This represents the

number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and
N ´ K failures) without replacement. If we did this with replacement, then this scenario would be represented
as Bin

`

n, K
N

˘

.

- Negative Binomial: X „ NegativeBinomialpr, pq (NegBinpr, pq for short) iff X is the sum of r iid Geometricppq

random variables. X has probability mass function

pX pkq “

ˆ

k ´ 1

r ´ 1

˙

pr p1 ´ pq
k´r

, k “ r, r ` 1, . . .

ErXs “ r
p and VarpXq “

rp1´pq

p2 . An example of a Negative Binomial r.v. is the number of independent coin

flips up to and including the rth head, where P pheadq “ p. If X1, . . . , Xn are independent Negative Binomial
r.v.’s, where Xi „ NegBinpri, pq, then X “ X1 ` . . . ` Xn „ NegBinpr1 ` . . . ` rn, pq.

Task 1 – Content Review Questions

a) True or false: V arpA ` Bq “ V arpAq ` V arpBq for any two random variables A and B

False. This property only holds if A and B are independent.

b) What is V arp3A ` 4q?

3V arpAq ` 4

3V arpAq

9V arpAq

V arpAq

9V arpAq by the property of variance

c) What is P pX “ 4q if X is a continuous random variable?

1

0

not enough information

(b). If X is a continuous random variable, the probability it takes on a particular constant is 0
since the support of X has infinite real values.

d) The cumulative distribution function for a continuous random variable X is FXpkq “
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şk

´8
fXpxqdx

ş8

´8
fXpxqdx

ş8

k
fXpxqdx

d
dkfXpkq

(a) We take the integral over the PDF over the appropriate range to get the CDF. Since the CDF
is FXpkq “ P pX ď kq we take the integral from negative infinity up to k.

e) The probability density function for a continuous random variable X is fXpkq “

şk

´8
fXpxqdx

d
dkFXpkq

(b) We take the derivative of the CDF to get the PDF.

f) True or False. If X is a continuous random variable, ErXs “
ş8

´8
xfXpxqdx

True. This is by definition of expectation for continuous random variables. Note the only different
from discrete and that we’re using an integral instead of a summation, and we’re using density
instead of probability!

g) True or False. If X is a continuous random variable, V arpXq “ ErX2s ´ pErXsq2

True. This definition for variance applies regardless of whether X is discrete or continuous.

Task 2 – Pond fishing

Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where B ` R ` G “ N . For each
of the following scenarios, identify the most appropriate distribution (with parameter(s)):

a) how many of the next 10 fish I catch are blue, if I catch and release

Since this is the same as saying how many of my next 10 trials (fish) are a success (are blue),
this is a binomial distribution. Specifically, since we are doing catch and release, the probability
of a given fish being blue is B

N and each trial is independent. Thus:

Bin

ˆ

10,
B

N

˙

b) how many fish I had to catch until my first green fish, if I catch and release

Once again, each catch is independent, so this is asking how many trials until we see a success,
hence it is a geometric distribution:

Geo

ˆ

G

N

˙

c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute

This is asking for the number of occurrences of event given an average rate, which is the definition
of the Poisson distribution. Since we’re looking for events in the next 5 minutes, that is our time
unit, so we have to adjust the average rate to match (r per minute becomes 5r per 5 minutes).

Poip5rq
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d) whether or not my next fish is blue

This is the same as the binomial case, but it’s only one trial, so it is necessarily Bernoulli.

Ber

ˆ

B

N

˙

e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch

We have not covered the Hypergeometric RV in class, but its definition is the number of successes
in n draws (without replacement) from N items that contain K successes in total. In this case,
we have 10 draws (without replacement because we do not catch and release), and out of the N
fish, B are blue (a success).

HypGeopN,B, 10q

f) how many fish I have to catch until I catch three red fish, if I catch and release

Negative binomial is another RV we didn’t cover in class. It models the number of trials with
probability of success p, until you get r successes. In this case, as before, our trials are caught fish
(with replacement this time) and our success is if the fish are red, which happens with probability
R
N .

NegBin

ˆ

3,
R

N

˙

Task 3 – Best Coach Ever!!

You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2
independently of every other match.

a) How many matches do you expect to fight until you win 10 times and what kind of random variable is this?

The number of matches you have to fight until you win 10 times can be modeled by
ř10

i“1 Xi

where Xi „ Geometricp0.2q is the number of matches you have to fight to go from i´ 1 wins to
i wins, including the match that gets you your ith win, where every match has a 0.2 probability
of success. Recall ErXis “ 1

0.2 “ 5. Er
ř10

i“1 Xis “
ř10

i“1 ErXis “
ř10

i
1
0.2 “ 10 ¨ 5 “ 50.

b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer
needs to win at least 10 matches in a year. What is the probability that you will go to the Championship
this year and what kind of random variable is the number of matches you win out of the 12?
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You can go to the championship if you win more than or equal to 10 times this year. Let Y be
the number of matches you win out of the 12 matches. Note that Y „ Binomialp12, 0.2q. Since
the max number you can win is 12 (there are 12 matches), we are looking for P p10 ď Y ď 12q.
Thus, since Y is discrete, we are interested in

PpY “ 10q ` PpY “ 11q ` PpY “ 12q “

12
ÿ

i“10

ˆ

12

i

˙

0.2ip1 ´ 0.2q12´i

c) Let p be your answer to part (b). How many times can you expect to go to the Championship in your 20
year career?

The number of times you go to the championship can be modeled by Y „ Binomialp20, pq. So,
ErY s “ 20 ¨ p.

Task 4 – True or False?

Identify the following statements as true or false (true means always true). Justify your answer.

a) For any random variable X, we have ErX2s ě ErXs2.

True. VarpXq is the expectation of a square so VarpXq ě 0. Then we have ErX2s ´ ErXs2 “

VarpXq ě 0 which is equivalent to what we need to prove.

b) Let X,Y be random variables. Then, X and Y are independent if and only if ErXY s “ ErXsErY s.

False. The forward implication is true, but the reverse is not. For example, ifX „ Uniformp´1, 1q

(equally likely to be in t´1, 0, 1u), and Y “ X2, we have ErXs “ 0, so ErXsErY s “ 0. However,
since X “ X3 (why? X takes on only 3 values ´1, 0, 1 which are the 3 solutions of the equation
x3 ´x “ 0), ErXY s “ ErXX2s “ ErX3s “ ErXs “ 0, we have that ErXsErY s “ 0 “ ErXY s.
However, X and Y are not independent; indeed, PpY “ 0|X “ 0q “ 1 ‰ 1

3 “ PpY “ 0q.

c) Let X „ Binomialpn, pq and Y „ Binomialpm, pq be independent. Then, X ` Y „ Binomialpn ` m, pq.

True. X is the sum of n independent Bernoulli trials, and Y is the sum of m. So X ` Y is the
sum of n ` m independent Bernoulli trials, so X ` Y „ Binomialpn ` m, pq.

d) Let X1, ..., Xn`1 be independent Bernoullippq random variables. Then, Er
řn

i“1 XiXi`1s “ np2.

True. Notice that XiXi`1 is also Bernoulli (only takes on 0 and 1), but is 1 iff both are 1, so
XiXi`1 „ Bernoullipp2q. The statement holds by linearity, since ErXiXi`1s “ p2.

e) LetX1, ..., Xn`1 be independent Bernoullippq random variables. Then, Y “
řn

i“1 XiXi`1 „ Binomialpn, p2q.

False. They are all Bernoulli p2 as determined in the previous part, but they are not independent.
Indeed, PpX1X2 “ 1|X2X3 “ 1q “ PpX1 “ 1q “ p ‰ p2 “ PpX1X2 “ 1q.

f) If X „ Bernoullippq, then nX „ Binomialpn, pq.

False. The range of X is t0, 1u, so the range of nX is t0, nu. nX cannot be Binpn, pq, otherwise
its range would be t0, 1, ..., nu.
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g) If X „ Binomialpn, pq, then X
n „ Bernoullippq.

False. Again, the range of X is t0, 1, ..., nu, so the range of X
n is t0, 1

n ,
2
n , ..., 1u. Hence it cannot

be Berppq, otherwise its range would be t0, 1u.

h) For any two independent random variables X,Y , we have VarpX ´ Y q “ VarpXq ´ VarpY q.

False. VarpX ´ Y q “ VarpX ` p´Y qq “ VarpXq ` p´1q2VarpY q “ VarpXq ` VarpY q.

Task 5 – Memorylessness

We say that a random variable X is memoryless if PpX ą k ` i | X ą kq “ PpX ą iq for all non-negative
integers k and i. The idea is that X does not remember its history. Let X „ Geoppq. Show that X is memoryless.

Let’s note that if X „ Geoppq, then PpX ą kq “ Ppno successes in the first k trialsq “ p1 ´ pqk.

PpX ą k ` i | X ą kq “
PpX ą k | X ą k ` iq PpX ą k ` iq

PpX ą kq
rBayes Theorems

“
PpX ą k ` iq

PpX ą kq
rPpX ą k | X ą k ` iq “ 1s

“
p1 ´ pqk`i

p1 ´ pqk
rPpX ą kq “ p1 ´ pqks

“ p1 ´ pqi

“ PpX ą iq

Task 6 – Fun with Poissons

Let X „ Poissonpλ1q and Y „ Poissonpλ2q, where X and Y are independent.

a) Show that X ` Y „ Poissonpλ1 ` λ2q. To show that a random variable is distributed according to a
particular distribution, we must show that they have the same PMF. Thus, we are trying to show that

P pX ` Y “ nq “ e´pλ1`λ2q pλ1`λ2q
n

n!
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P pX ` Y “ nq “

n
ÿ

k“0

P pX “ k X Y “ n ´ kq

“

n
ÿ

k“0

P pX “ kqP pY “ n ´ kq rX and Y are independents

“

n
ÿ

k“0

e´λ1
λk
1

k!
e´λ2

λn´k
2

pn ´ kq!

“ e´pλ1`λ2q

n
ÿ

k“0

λk
1

k!

λn´k
2

pn ´ kq!

“ e´pλ1`λ2q

n
ÿ

k“0

1

k!pn ´ kq!
λk
1λ

n´k
2

“
e´pλ1`λ2q

n!

n
ÿ

k“0

n!

k!pn ´ kq!
λk
1λ

n´k
2

“
e´pλ1`λ2q

n!

n
ÿ

k“0

ˆ

n

k

˙

λk
1λ

n´k
2

“
e´pλ1`λ2q

n!
pλ1 ` λ2qn rBinomial Theorems

b) Show that P pX “ k | X ` Y “ nq “ P pW “ kq where W „ Binpn, λ1

λ1`λ2
q

P pX “ k | X ` Y “ nq “
P pX “ k X X ` Y “ nq

P pX ` Y “ nq

“
P pX “ k X Y “ n ´ kq

P pX ` Y “ nq

“
P pX “ kqP pY “ n ´ kq

P pX ` Y “ nq
rX and Y are independents

“
e´λ1 λk

1

k! ¨ e´λ2
λn´k
2

pn´kq!

e´pλ1`λ2q pλ1`λ2qn

n!

“

λk
1

k! ¨
λn´k
2

pn´kq!

pλ1`λ2qn

n!

“
n!

k!pn ´ kq!
¨

λk
1λ

n´k
2

pλ1 ` λ2qn

“

ˆ

n

k

˙

λk
1 λn´k

2

pλ1 ` λ2qk pλ1 ` λ2qn´k

“

ˆ

n

k

˙ ˆ

λ1

λ1 ` λ2

˙k ˆ

λ2

λ1 ` λ2

˙n´k

“ P pW “ kq

Task 7 – Hat Check
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At a reception, n people give their hats to a hat-check person. When they leave, the hat-check person gives each
of them a hat chosen at random from the hats that remain. What is the expected number of people who get
their own hats back? (Notice that the hats returned to two people are not independent events: if a certain hat
is returned to one person, it cannot also be returned to the other person.)

Let X be the number of people who get their hats back. For i P rns, let Xi be 1 if person i gets

their hat back, and 0 otherwise. Then, ErXis “ PpXi “ 1q “
|E|

|Ω|
. The sample space is all possible

distributions of hats among the n people, and the event of interest E is the subset of the sample
space where person i has their own hat. There are n! ways to distribute the n hats among the n
people. This is because the first person might have gotten 1 out of n possible hats; for each hat the
first person got, the second person could get n ´ 1 possible hats; and so on. The number of ways
person i can get their hat back is pn ´ 1q!. This is because we are essentially removing person i and
hat i from the pool of people/hats, and counting the permutations of the n ´ 1 remaining people.

Thus, PpXi “ 1q “
pn´1q!

n! “ 1
n . Since X “

řn
i“1 Xi, Linearity of Expectation tell us that

ErXs “ E

«

n
ÿ

i“1

Xi

ff

“

n
ÿ

i“1

ErXis “

n
ÿ

i“1

1

n
“ n ¨

1

n
“ 1 .

Task 8 – Balls and Bins

Throw n balls into m bins, where m and n are positive integers. Let X be the number of bins with exactly one
ball. Compute VarpXq.

Let Xi be the indicator that bin i has exactly one ball, for each i “ 1, ...,m. Since X “
ř

i Xi, we
can use the computational formula for variance:

VarpXq “ ErX2s ´ ErXs2

“ E

«˜

m
ÿ

i“1

Xi

¸2ff

´

˜

E

«

m
ÿ

i“1

Xi

ff¸2

“ E

«

ÿ

i‰j

XiXj `

m
ÿ

i“1

X2
i

ff

´

˜

m
ÿ

i“1

ErXis

¸2

rExpand square of sums

“
ÿ

i‰j

ErXiXjs `

m
ÿ

i“1

ErXis ´

˜

m
ÿ

i“1

ErXis

¸2

,

where the last line followed from linearity of expectation and recognizing that X2
i “ Xi, since it can

only take on the values 0 or 1.
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One has

ErXis “ 1 ¨ PpXi “ 1q ` 0 ¨ PpXi “ 0q rDefinition of Expectations

“ PpXi “ 1q

“

ˆ

n

1

˙

¨

´ 1

m

¯1´m ´ 1

m

¯n´1

“
n

m

´m ´ 1

m

¯n´1

which is putting only one ball out of n balls into ith bin.
For j P 1, ..., n, j ‰ i,

ErXiXjs “

ˆ

n

1

˙ˆ

n ´ 1

1

˙

´ 1

m

¯1´ 1

m

¯1´m ´ 2

m

¯n´2

“
npn ´ 1q

m2

´m ´ 2

m

¯n´2

which is putting only one ball out of n balls into ith bin and only one ball out of n ´ 1 balls into jth
bin.
Noting that

ř

i‰j has mpm ´ 1q terms, and the rest of the sums have m terms, we find

VarpXq “ mpm ´ 1q ¨
npn ´ 1q

m2

´m ´ 2

m

¯n´2

` m ¨
n

m

´m ´ 1

m

¯n´1

´ m2
” n

m

´m ´ 1

m

¯n´1ı2

Task 9 – Continuous r.v. example

Suppose that X is a random variable with pdf

fXpxq “

#

2Cp2x ´ x2q 0 ď x ď 2

0 otherwise

where C is an appropriately chosen constant.

a) What must the constant C be for this to be a valid pdf?

For fXpxq to be a valid PDF, fXpxq must be non-negative and the area under the graph must
be 1. For 0 ď x ď 2, we have 2x ´ x2 “ xp2 ´ xq ě 0 so we only need C ě 0 for fX to be
non-negative everywhere. Computing the area under the graph as a function of C gives us

ż 8

´8

fXpxqdx “

ż 2

0

2Cp2x ´ x2qdx “ 2C

ˆ

x2 ´
1

3
x3

ˇ

ˇ

ˇ

2

0

˙

“ 2C
4

3
“

8

3
C

Setting this equation equal to 1, and solving for C gives use C “ 3
8 .

b) Using this C, what is PpX ą 1q?

9



The PpX ą 1q “
ş8

1
fXpxqdx. Using our value for C that we found in the previous part we can

compute this integral as follows:

ż 8

1

fXpxqdx “

ż 2

1

6

8

`

2x ´ x2
˘

dx “
6

8

ˆ

x2 ´
1

3
x3

˙

ˇ

ˇ

ˇ

2

1
“

1

2

Alternatively, PpX ą 1q “ 1 ´ PpX ď 1q “ 1 ´ FXp1q “ 1 ´
ş1

´8
fXpxqdx. Using our value for

C that we found in the previous part we can compute this integral as follows:

ż 1

´8

fXpxqdx “

ż 1

0

6

8

`

2x ´ x2
˘

dx “
6

8

ˆ

x2 ´
1

3
x3

˙

ˇ

ˇ

ˇ

1

0
“

1

2

Plugging this value into our initial equation gives P pX ą 1q “ 1 ´ 1
2 “ 1

2 .

Task 10 – Throwing a dart

Consider the closed unit circle of radius r, i.e., S “ tpx, yq : x2 ` y2 ď r2u. Suppose we throw a dart onto this
circle and are guaranteed to hit it, but the dart is equally likely to land anywhere in S. Concretely this means
that the probability that the dart lands in any particular area of size A (that is entirely inside the circle of radius
R), is equal to A

Area of whole circle . The density outside the circle of radius r is 0.
Let X be the distance the dart lands from the center. What is the CDF and pdf of X? What is ErXs and

VarpXq?

Since FXpxq is the probability that the dart lands inside the circle of radius x, that probability is the
area of a circle of radius x divided by the area of the circle of radius r (i.e., πx2{πr2). Thus, our
CDF looks like

FXpxq “

$

’

&

’

%

0 x ă 0
x2

r2 0 ď x ď r

1 x ą r

To find the PDF we just need to take the derivative of the CDF, which give us the following:

fXpxq “

#

2x
r2 0 ă x ď r

0 otherwise

Using the definition of expectation we get

ErXs “

ż 8

´8

xfXpxqdx “

ż r

0

x
2x

r2
dx “

2

3r2

´

x3
ˇ

ˇ

ˇ

r

0

¯

“
2

3
r

We know that VarpXq “ ErX2s ´ ErXs2.

ErX2s “

ż 8

´8

x2fXpxqdx “

ż r

0

x2 2x

r2
dx “

2

4r2

´

x4
ˇ

ˇ

ˇ

r

0

¯

“
1

2
r2
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Plugging this into our variance equation gives

VarpXq “ ErX2s ´ ErXs2 “
1

2
r2 ´

ˆ

2

3
r

˙2

“
1

18
r2

Task 11 – A square dartboard?

You throw a dart at an s ˆ s square dartboard. The goal of this game is to get the dart to land as close to the
lower left corner of the dartboard as possible. However, your aim is such that the dart is equally likely to land
at any point on the dartboard. Let random variable X be the length of the side of the smallest square B in the
lower left corner of the dartboard that contains the point where the dart lands. That is, the lower left corner of B
must be the same point as the lower left corner of the dartboard, and the dart lands somewhere along the upper
or right edge of B. For random variable X, find the CDF, PDF, ErXs, and VarpXq.

See the image below for three examples of how X can take on a value.

Since FXpxq is the probability that the dart lands inside the square of side length x, that probability
is the area of a square of length x divided by the area of the square of length radius s (i.e., x2{r2).
Thus, our CDF looks like

FXpxq “

$

&

%

0, if x ă 0
x2{s2, if 0 ď x ď s
1, if x ą s

To find the PDF, we just need to take the derivative of the CDF, which gives us the following:

fXpxq “
d

dx
FXpxq “

"

2x{s2, if 0 ď x ď s
0, otherwise

Using the definition of expectation and variance we can compute ErXs and VarpXq in the following
manner:

ErXs “

ż s

0

xfXpxqdx “

ż s

0

2x2

s2
dx “

2

s2

ż s

0

x2 dx “
2

3s2
“

x3
‰s

0
“

2

3
s

ErX2s “

ż s

0

x2fXpxqdx “

ż s

0

2x3

s2
dx “

2

s2

ż s

0

x3 dx “
1

2s2
“

x4
‰s

0
“

1

2
s2

VarpXq “ ErX2s ´ pErXsq2 “
1

2
s2 ´

ˆ

2

3
s

˙2

“
1

18
s2
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