

< > 解
 02 - Random Variables

Some number
(the range of \mathbf{X} is the set of possible values X can take on)

Probability Mass Function (PMF)

probability that the random variable X will take on the value k
what is the probability of an outcome that will result in X being k for discrete random variables (random variables with afinite, countably infinite range), this may sometimes be a piecewise function

三 Random Variables

${ }^{01}$

02
03
4

Random Variables

An outcome
from a random
experiment
for discrete random variables (random variables with a finite, countably infinite range), this may sometimes be a piecewise function

Random Variables

An outcome from a random experiment

X

a random variable

Some number (the range (or support) of X (sometimes denoted as $\boldsymbol{\Omega}_{\mathbf{x}}$) is the set of possible values X can take on)

Cumulative Distribution Function

$P(X<=k)$-> probability that the value X takes on is less than or equal to k
what is the probability of an outcome that will result in X being $<=k$
often can be derived from the PDF

Random Variables

Random Variables

Random Variables

An outcome from a random experiment

X

a random
Expectation of a function of X (aka "Law of the Unconscious Statistician" (aka "LOTUS"))

$\mathrm{E}[\mathrm{f}(\mathrm{X})]=\Sigma(f(t) \cdot P(X=k))$

(note that the probabilities are still weighted using $X(\operatorname{not} f(X))$

LoE

Linearity of Expectation is a powerful property of random variables!

Random Variables

allow us to represent a quantitative property of a random experiment

EXPECTATION - weighted average of possible outcomes

you could use "brute force" and use the formula for expectation ($\mathrm{E}[\mathrm{X}]=\Sigma(\mathrm{x} * \mathrm{P}(\mathrm{x}))$)
sometimes, just applying the formula can be messy, so LoE comes in handy
LINEARITY OF EXPECTATION (LoE) is one important property

```
E(X+Y) = E(X) + E(Y)
```

the expected value of the sum of 2 random variables is the sum of their expected values

02 - Linearity of Expectation

```
E(X+Y) = E(X) + E(Y)
```

the expected value of the sum of 2 random variables is the sum of their expected values
this gives us a helpful tool to calculate expectations of complex RVs

< >
 02 - Linearity of Expectation

```
E(X+Y) = E(X) + E(Y)
```

the expected value of the sum of 2 random variables is the sum of their expected values
this gives us a helpful tool to calculate expectations of complex RVs
DECOMPOSE into a sum of random variables $\mathrm{X}=\mathrm{x} 1+\mathrm{x} 2+\ldots+\mathrm{Xn}$

< >
 02 - Linearity of Expectation

```
\(E(X+Y)=E(X)+E(Y)\)
```

the expected value of the sum of 2 random variables is the sum of their expected values
this gives us a helpful tool to calculate expectations of complex RVs
DECOMPOSE into a sum of random variables $\mathrm{x}=\mathrm{x} 1+\mathrm{x} 2+\ldots+\mathrm{Xn}$

APPLY linearity of expectation $E[X]=E[X 1]+E[X 2]+\ldots+E[X n]$

< > 路
 02 - Linearity of Expectation

$E(X+Y)=E(X)+E(Y)$

the expected value of the sum of 2 random variables is the sum of their expected values
this gives us a helpful tool to calculate expectations of complex RVs
DECOMPOSE into a sum of random variables $\mathrm{X}=\mathrm{x} 1+\mathrm{x} 2+\ldots+\mathrm{Xn}$

$$
\text { APPLY linearity of expectation } E[X]=E[X 1]+E[X 2]+\ldots+E[X n]
$$

CONQUER and calculate each value $E[X 1]=\ldots, E[X 2]=\ldots, \ldots$

02 - Linearity of Expectation

$E(X+Y)=E(X)+E(Y)$

the expected value of the sum of 2 random variables is the sum of their expected values
sometimes, these Xi variables we "decompose" X into are indicator random variables
this gives us a helpful tool to calculate expectations of complex RVs
DECOMPOSE into a sum of random variables $\mathrm{x}=\mathrm{x} 1+\mathrm{x} 2+\ldots+\mathrm{Xn}$

$$
\text { APPLY linearity of expectation } E[X]=E[X 1]+E[X 2]+\ldots+E[X n]
$$

CONQUER and calculate each value $E[X 1]=\ldots, E[X 2]=\ldots, \ldots$

02 - Linearity of Expectation

```
***}X\mathrm{ and Y DON' T have to be independent!
```


$E(X+Y)=E(X)+E(Y)$

the expected value of the sum of 2 random variables is the sum of their expected values
sometimes, these Xi variables we "decompose" X into are indicator random variables
this gives us a helpful tool to calculate expectations of complex RVs
DECOMPOSE into a sum of random variables $\mathrm{x}=\mathrm{x} 1+\mathrm{X} 2+\ldots+\mathrm{Xn}$

$$
\text { APPLY linearity of expectation } E[X]=E[X 1]+E[X 2]+\ldots+E[X n]
$$

CONQUER and calculate each value $E[X 1]=\ldots, E[X 2]=\ldots, \ldots$

Indicator Random Variables

we can define a indicator random variable X for an event A
$X= \begin{cases}1 & \text { if event } A \text { happens } \\ 0 & \text { if event } A \text { doesn't happen }\end{cases}$
${ }^{\wedge} X$ tells us whether event A will happen \rightarrow so, $P(X=1)=P(A)$
this is why indicator RVs
Note that $\mathrm{E}[\mathrm{X}]=1{ }^{*} \mathrm{P}(\mathrm{X}=1)+0 * P(\mathrm{X}=0)=\mathrm{P}(\mathrm{X}=1)$ can be really useful when applying linearity of expectation!

Additional slides for content that will be covered later in the week!

< > 鱼
 02 - Linearity of Expectation

linearity of expectation is special!
$E[X+Y]=E[X]+E[Y]$ but $E\left[X^{\wedge} 2\right] \neq(E[X])^{\wedge} 2$
instead...

$$
\mathrm{E}[\mathrm{~g}(\mathrm{X})]=\Sigma(\mathrm{g}(\mathrm{x}) \quad * \mathrm{P}(\mathrm{X}=\mathrm{x}))
$$

Variance

Variance is a another property of RVs (like expectation) that measures how much the values in the RV "vary"

Random Variables

allow us to represent a quantitative property of a random experiment

VARIANCE - how "different" are values from the expectectation "on average"
every random variable has some variance

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=\Sigma_{x}\left(P(X=X) *(X-E(X))^{2}\right) \\
& \text { expected value of the } \\
& \text { squared distance between } \\
& \text { each RV outcome and the } \\
& \text { expected value of RV } \\
& \text { add up all the squared } \\
& \text { distances weighted by } \\
& \text { their probabilities }
\end{aligned}
$$

Random Variables

allow us to represent a quantitative property of a random experiment

VARIANCE - how "different" are values from the expectectation "on average"
every random variable has some variance

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=\Sigma_{x}\left(P(X=x) *(X-E(X))^{2}\right)
$$

Properties

$$
\begin{gathered}
\operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X) \\
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
\end{gathered}
$$

Random Variables

allow us to represent a quantitative property of a random experiment

VARIANCE - how "different" are values from the expectectation "on average"
every random variable has some variance

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=\Sigma_{x}\left(P(X=x) *(X-E(X))^{2}\right)
$$

Properties

$$
\begin{gathered}
\operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X) \\
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
\end{gathered}
$$

INDEPENDENT RV

What does independence mean for random variables?

< >
 Random Variable Independence

Random variables X and Y are independent if -
$P(X=x, Y=y)=P(X=x) \cdot P(Y=y)$
Knowing the value of X doesn't help "guess" what Y is
it's a useful property! if X and Y are independent random variables then -

$$
\begin{aligned}
& E(X \cdot Y)=E[X] \cdot E[Y] \\
& \operatorname{Var}(X+Y)=\operatorname{Var}[X]+\operatorname{Var}[Y] \quad \text { Linearity of variance holds }
\end{aligned}
$$

$<>$ Random Variable Independence

Random variables X and Y are independent if -
$P(X=x, Y=y)=P(X=x) \cdot P(Y=y)$
Knowing the value of X doesn't help "guess" what Y is
Additionally, there's independent and identically distributed (aka,
"i.i.d.") random variables
In addition to independence, i.i.d. random variables also have the same pmf.

For example, rolling a die twice, where X is the first roll number and Y is the second roll number

Problems!

