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01 - Reminders!

HW 2 grades released
(regrade requests open ~24 hours after 

grades are released and close after a week)

HW 3
(written & coding part due yesterday)

Midterm on July 15 @ 3:30 - 5:20 in 
BAG131



Review



02 - Random Variables

An outcome 
from a random 
experiment

Some number
(the range of X is the set of 
possible values X can take on)

X
a random 
variable

P(X=k) probability that the random variable X will take on 
the value k
what is the probability of an outcome that will result in X being k

for discrete random variables (random variables with afinite, countably
infinite range), this may sometimes be a piecewise function

Probability Mass Function (PMF)



Random Variables

Random variable
Captures a quantitative property 

(some numerical value that describes the 
outcome) of the outcome in a random 

experiment

e.g., sum of the dices on an random 
experiment where we roll 2 dice
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An outcome 
from a random 
experiment

X
a random 
variable

Probability Mass Function (PMF)

pX(k) =P(X=k)
probability that the random 
variable X will take on the value 
k
what is the probability of an outcome 
that will result in X being k

for discrete random variables (random variables with a finite, countably
infinite range), this may sometimes be a piecewise function

Some number
(the range (or support) of X 
(sometimes denoted as ΩX) is 
the set of possible values X can 
take on)
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Random Variables
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An outcome 
from a random 
experiment

X
a random 
variable

Cumulative Distribution Function

FX(k) = P(X <= k) —> probability that the value X takes on is 
less than or equal to k
what is the probability of an outcome that will result in X being <= k

often can be derived from the PDF

Some number
(the range (or support) of X 
(sometimes denoted as ΩX) is 
the set of possible values X can 
take on)
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Random Variables
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An outcome 
from a random 
experiment

X
a random 
variable

Expectation

E[X] = sum of values in the range of X,                                     
weighted by the probability

on average, what value can we “expect” X to take?

think about it like a weighted average of all the possible values X could be (weighted by the P(X=k))

Σ(k · P(X=k))

Some number
(the range (or support) of X 
(sometimes denoted as ΩX) is 
the set of possible values X can 
take on)
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Random Variables
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An outcome 
from a random 
experiment

Some number
(the range (or support) of X 
(sometimes denoted as ΩX) is 
the set of possible values X can 
take on)

X
a random 
variable

Expectation

E[X] = sum of values in the range of X,                                     
weighted by the probability

on average, what value can we “expect” X to take?

just averaging all the possible values of X wouldn’t work since each outcome isn’t necessarily equally likely

Σ(k · P(X=k))
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Random Variables

01

02

03

04

An outcome 
from a random 
experiment

Some number
(the range (or support) of X 
(sometimes denoted as ΩX) is 
the set of possible values X can 
take on)

X
a random 
variable

Expectation of a function of X (aka “Law of the Unconscious Statistician” 
(aka “LOTUS”))

E[f(X)] =
on average, what value can we “expect” f(X) to take?

Σ(f(k) · P(X=k))
(note that the 
probabilities are 
still weighted 
using X (not f(X))
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LoE
Linearity of Expectation is a powerful 

property of random variables!



02 - Linearity of Expectation

Random Variables
allow us to represent a quantitative property of a random experiment

EXPECTATION - weighted average of possible outcomes

you could use “brute force” and use the formula for expectation (E[X]=∑(x*P(x)))

E(X+Y) = E(X) + E(Y)

LINEARITY OF EXPECTATION (LoE) is one important property  

the expected value of the sum of 2 random variables is 
the sum of their expected values

sometimes, just applying the formula can be messy, so LoE comes in handy



02 - Linearity of Expectation

this gives us a helpful tool to calculate expectations of complex RVs

E(X+Y) = E(X) + E(Y)
the expected value of the sum of 2 random variables is 
the sum of their expected values



02 - Linearity of Expectation

this gives us a helpful tool to calculate expectations of complex RVs

DECOMPOSE into a sum of random variables X = X1 + X2 + … + Xn

E(X+Y) = E(X) + E(Y)
the expected value of the sum of 2 random variables is 
the sum of their expected values



02 - Linearity of Expectation

this gives us a helpful tool to calculate expectations of complex RVs

DECOMPOSE into a sum of random variables

APPLY linearity of expectation

X = X1 + X2 + … + Xn

E[X] = E[X1] + E[X2] + … + E[Xn]

E(X+Y) = E(X) + E(Y)
the expected value of the sum of 2 random variables is 
the sum of their expected values



02 - Linearity of Expectation

this gives us a helpful tool to calculate expectations of complex RVs

DECOMPOSE into a sum of random variables

APPLY linearity of expectation

CONQUER and calculate each value

X = X1 + X2 + … + Xn

E[X] = E[X1] + E[X2] + … + E[Xn]

E[X1] = ..., E[X2] = ..., ...

E(X+Y) = E(X) + E(Y)
the expected value of the sum of 2 random variables is 
the sum of their expected values



02 - Linearity of Expectation

DECOMPOSE into a sum of random variables

APPLY linearity of expectation

CONQUER and calculate each value

X = X1 + X2 + … + Xn

E[X] = E[X1] + E[X2] + … + E[Xn]

E[X1] = ..., E[X2] = ..., ...

sometimes, these Xi 
variables we 
“decompose” X into 
are indicator 
random variablesthis gives us a helpful tool to calculate expectations of complex RVs

E(X+Y) = E(X) + E(Y)
the expected value of the sum of 2 random variables is 
the sum of their expected values



02 - Linearity of Expectation

DECOMPOSE into a sum of random variables

APPLY linearity of expectation

CONQUER and calculate each value

X = X1 + X2 + … + Xn

E[X] = E[X1] + E[X2] + … + E[Xn]

E[X1] = ..., E[X2] = ..., ...

sometimes, these Xi 
variables we 
“decompose” X into 
are indicator 
random variablesthis gives us a helpful tool to calculate expectations of complex RVs

E(X+Y) = E(X) + E(Y)
the expected value of the sum of 2 random variables is 
the sum of their expected values

***X and Y DON’T have to be independent!



02 - Linearity of Expectation

Indicator Random Variables

we can define a indicator random variable X for an event A

X =
1   if event A happens
0   if event A doesn’t happen

^ X tells us whether event A will happen → so, P(X = 1) = P(A)

Note that  E[X]  = 1 * P(X=1) + 0 * P(X=0) = P(X=1)
this is why indicator RVs 
can be really useful when 
applying linearity of 
expectation!



Additional slides for content that 
will be covered later in the week!



02 - Linearity of Expectation

linearity of expectation is special!

E[X+Y] = E[X] + E[Y]   but   E[X^2] ≠ (E[X])^2

E[g(X)] = Σ(g(x) * P(X=x))
instead…



Variance
Variance is a another property of RVs 
(like expectation) that measures how 

much the values in the RV “vary”



03 - Variance

Random Variables
allow us to represent a quantitative property of a random experiment

VARIANCE - how “different” are values from the expectectation “on average”

every random variable has some variance

Var(X)= E[(X-E(X))2] = Σx(P(X=x)*(x-E(X))
2)

expected value of the 
squared distance between 
each RV outcome and the 
expected value of RV

add up all the squared 
distances weighted by 
their probabilities

variance = (standard deviation)2



03 - Variance

Random Variables
allow us to represent a quantitative property of a random experiment

VARIANCE - how “different” are values from the expectectation “on average”

every random variable has some variance

Var(X)= E[(X-E(X))2] = Σx(P(X=x)*(x-E(X))
2)

Properties

Var(a·X + b) = a2· Var(X)
Var(X) = E[X2]-(E[X])2



03 - Variance

Random Variables
allow us to represent a quantitative property of a random experiment

VARIANCE - how “different” are values from the expectectation “on average”

every random variable has some variance

Var(X)= E[(X-E(X))2] = Σx(P(X=x)*(x-E(X))
2)

Properties

Var(a·X + b) = a2· Var(X)
Var(X) = E[X2]-(E[X])2



INDEPENDENT RV

What does independence mean for 
random variables?



Random variables X and Y are independent if, for all x, y in the ranges of X and Y:

P(X=x, Y=y) = P(X=x)·P(Y=y)
Knowing the value of X doesn’t help “guess” what Y is

Random Variable Independence



Random variables X and Y are independent if –

P(X=x, Y=y) = P(X=x)·P(Y=y)
Knowing the value of X doesn’t help “guess” what Y is

Random Variable Independence

it’s a useful property! if X and Y are independent random variables then —

E(X  · Y) = E[X] · E[Y]

Var(X  + Y) = Var[X] + Var[Y] Linearity of variance holds



Random variables X and Y are independent if –

P(X=x, Y=y) = P(X=x)·P(Y=y)
Knowing the value of X doesn’t help “guess” what Y is

Random Variable Independence

Additionally, there’s independent and identically distributed  (aka, 
“i.i.d. ”) random variables

In addition to independence, i.i.d. random variables also have the 
same pmf.

For example, rolling a die twice, where X is the first roll number and Y 
is the second roll number



Problems!


