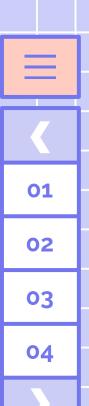


Credit: Super Mario Wiki



P(A|B)

probability of the event A occurring given that the event B occurs

"what is the probability that event A happens given that event B happened?"

\equiv

Conditional Probability

(

01

02

03

04

P(A|B)

probability of the event A occurring given that the event B occurs

"what is the probability that event A happens after learning that event B happened?"

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

<

01

02

03

04

P(A|B)

probability of the event A occurring given that the event B occurs

"what is the probability that event A happens given that event B happened?"

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$

-BAYES RULE-

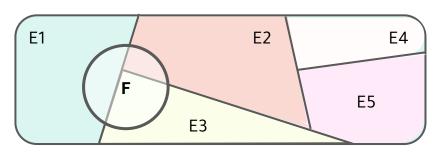
TIPS:

- start by writing all the probabilities you know
- write down what you want to find

We can use conditional probability to help calculate more complex probabilities!

Conditional Probability - LTP

we can partition a sample space into discrete events



$$\Omega$$
 = E1 U E2 U E3 ...

into "disjoint" event sets

The probability of any other event F that is inside of this sample space Ω is

$$P(F) = P(F \cap E1) + P(F \cap E2) \dots + P(F \cap E5)$$

$$= P(F \mid E1)P(E1) + P(F \mid E2)P(E2) + \dots + P(F \mid E5)P(E5)$$

-LAW OF TOTAL PROBABILITY-

Conditional Probability - Chain Rule

sometimes we have a **sequential process** and want to find the probability of that e.g., finding the probability that event E1 happened, then event E2 happens, then event En happens

 $P(E1 \cap E2 \cap E3 \cap En) =$

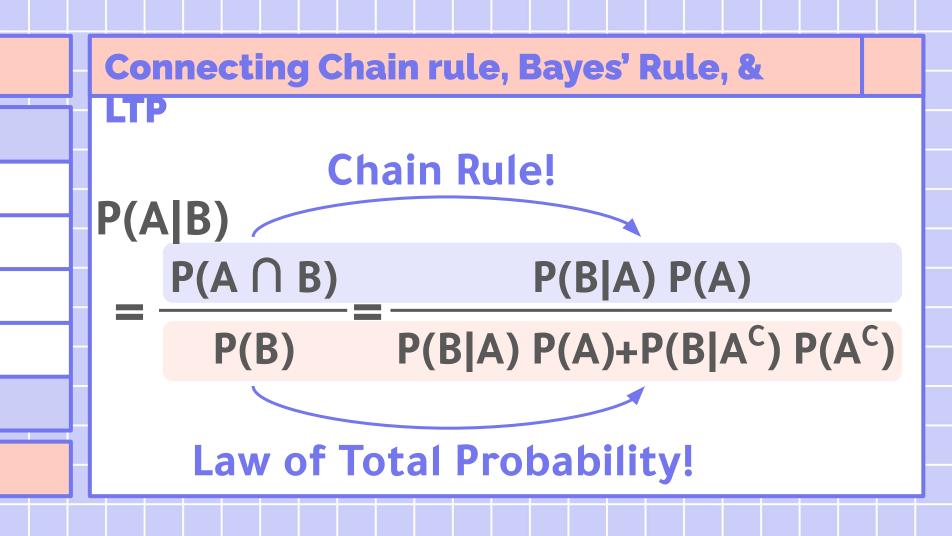
watch out for sometimes when the counting method may be easier

P(E1) · P(E2 | E1) · P(E3 | E2 ∩ E1) · ... ·P(En | E1 ∩ E2... ∩

E(n-1))

-CHAIN RULE-

multiplying probability of each event happening conditioned on all the previous events



Independence

Independence

two events are independent if there is no correlation between the events and they don't depend on each other

two events A, B are statistically independent if $P(A \cap B) = P(A) \cdot P(B)$

or

$$P(A \mid B) = P(A)$$
 and $P(B \mid A) = P(B)$

"knowing that B happened doesn't affect the probability that A will happen and vice versa" "knowing that B happened doesn't give any new information about A"

Just because 2 events may "sound like" they're independent, that doesn't mean that they are *statistically* independent

Conditional Independence

two events A, B are <u>conditionally independent</u> if $P((A \cap B) \mid C) = P(A \mid C) \cdot P(B \mid C)$

Just because 2 events may "sound like" they're independent, that doesn't mean that they are *statistically* independent

