
CSE 312: Foundations of Computing II Summer 2024

Section 2 – Solutions

Review

- Binomial Theorem: @x, y P,@n P: px` yqn “
řn

k“0

`

n
k

˘

xkyn´k

- Principle of Inclusion-Exclusion (PIE): 2 events: |AYB| “ |A| ` |B| ´ |AXB|
3 events: |AYB Y C| “ |A| ` |B| ` |C| ´ |AXB| ´ |AX C| ´ |B X C| ` |AXB X C|
In general: +singles - doubles + triples - quads + . . .

- Stars and Bars: There are
`

n`k´1
n

˘

“
`

n`k´1
k´1

˘

ways to pick n objects from k groups (where order doesn’t
matter and every element of each group is indistinguishable).

- Pigeonhole Principle: If there are n pigeons with k holes and n ą k, then at least one hole contains at least
2 (or to be precise, nk) pigeons.

- Complementary Counting (Complementing): If asked to find the number of ways to do X, you can: (1)
find the total number of ways to do everything and then (2) subtract the number of ways to not do X.

- Sample Space: The set of all possible outcomes of an experiment, denoted Ω or S

- Event: Some subset of the sample space, usually a capital letter such as E Ď Ω

- Union: The union of two events E and F is denoted E Y F

- Intersection: The intersection of two events E and F is denoted E X F or EF

- Mutually Exclusive: Events E and F are mutually exclusive iff E X F “ H

- Complement: The complement of an event E is denoted EC or E or ␣E, and is equal to ΩzE

- DeMorgan’s Laws: pE Y F qC “ EC X FC and pE X F qC “ EC Y FC

- Probability of an event E: denoted P pEq or PpEq or P pEq

Axioms of Probability and their Consequences

1. (Non-negativity) For any event E, P pEq ě 0

2. (Normalization) P pΩq “ 1

3. (Additivity) If E and F are mutually exclusive, then P pE Y F q “ P pEq ` P pF q

Corollaries of these axioms:

- P pEq ` P
`

EC
˘

“ 1

- If E Ď F , P pEq ď P pF q

- P pE Y F q “ P pEq ` P pF q ´ P pE X F q
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Equally Likely Outcomes: If every outcome in a finite sample space Ω is equally likely, and E is an event, then

P pEq “
|E|

|Ω|
.

- Make sure to be consistent when counting |E| and |Ω|. Either order matters in both, or order doesn’t
matter in both.

Task 1 – Review Questions

a) True or False. The following statement is always true: |AYB| “ |A| ` |B|

False. Unless A and B do not overlap, by the property of inclusion-exclusion, |A Y B| “ |A| `
|B| ´ |AXB|.

b) If there are 7 pigeons that each go into one of 3 holes:

There is at least one hole with exactly 3 pigeons in it.

There is at least one hole with at least 3 pigeons in it.

There is exactly one hole with at least 3 pigeons in it.

By the pigeonhole principle, there will be at least one hole with at least r 73 s “ 3 pigeons in it.

c) px` yqn “
řn

k“0

`

n
k

˘

xkyn´k

řn
k“0 x

kyn´k

řn
k“0

`

n
k

˘

xk

(a) by definition of binomial theorem.

d) An event and sample space are, respectively:

The total set of possible outcomes; A subset of the event space

A subset of the sample space; The total set of possible outcomes

Some set of outcomes; Any other set of outcomes.

(b) by definition of event and sample space. An event is always a subset of the sample space.

e) True or False. It is always true that PpEq “ |E|

|Ω|
.

False. This is only true if all outcomes in the sample space are equally likely.

f) If A is the event that I eat an apple today,

A is the event that I eat a banana today, and P pAq ` P pAq “ 0.5

A is the event that I do not eat an apple today, and P pAq ` P pAq “ 0

A is the event that I do not eat an apple today, and P pAq ` P pAq “ 1

(c) is correct. A is the complement of the event A. In this case, that is the event that I do not
eat an apple today. P pAq ` P pAq “ 1 since I will definitely either eat or not eat an apple. This
property holds for all events!
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g) True or False. For any two events A and B P pAYBq ą P pAq ` P pBq.

False. The correct statement would be P pA Y Bq ě P pAq ` P pBq. If A and B are mutually
exclusive (i.e., AXB is an empty set), then P pAYBq “ P pAq ` P pBq. Another way to think
about it is, P pAYBq “ P pAq ` P pBq ´ P pAXBq (this is similar to the property of inclusion-
exclusion!). Sometimes, P pAXBq might be 0 when A and B can’t happen at the same time, so
then P pAYBq would equal P pAq ` P pBq

Task 2 – HBCDEFGA

How many ways are there to permute the 8 letters A, B, C, D, E, F, G, H so that A is not at the beginning and
H is not at the end?

The total number of permutations is 8!. The number of permutations with A at the beginning is 7!
and the number with H at the end is 7!. By inclusion/exclusion, the number that have either A at
the beginning or H at the end or both is 2 ¨ 7! ´ 6! since there are 6! that have A at the beginning
and H at the end. Finally, using complementary counting, the number that have neither A at the
end or H at the end is 8!´ p2 ¨ 7!´ 6!q.

Task 3 – Ingredients

Find the number of ways to rearrange the word “INGREDIENT”, such that no two identical letters are adjacent
to each other. For example, “INGREEDINT” is invalid because the two E’s are adjacent. Hint: use inclusion-
exclusion.

We use inclusion-exclusion. Let Ω be the set of all anagrams (permutations) of “INGREDIENT”, and
AI be the set of all anagrams with two consecutive I’s. Define AE and AN similarly. AI YAE YAN

clearly are the set of anagrams we don’t want. So we use complementing to count the size of
ΩzpAI Y AE Y AN q. By inclusion exclusion, |AI Y AE Y AN | “singles-doubles+triples, and by
complementing, |ΩzpAI YAE YAN q| “ |Ω| ´ |AI YAE YAN |.

First, |Ω| “
10!

2!2!2!
because there are 2 of each of I,E,N’s (multinomial coefficient). Clearly, the size

of AI is the same as AE and AN . So |AI | “
9!

2!2!
because we treat the two adjacent I’s as one

entity. We also need |AI XAE | “
8!

2!
because we treat the two adjacent I’s as one entity and the two

adjacent E’s as one entity (same for all doubles). Finally, |AI X AE X AN | “ 7! since we treat each
pair of adjacent I’s, E’s, and N’s as one entity.

Putting this together gives
10!

2!2!2!
´

˜

ˆ

3

1

˙

¨
9!

2!2!
´

ˆ

3

2

˙

¨
8!

2!
`

ˆ

3

3

˙

¨ 7!

¸

Task 4 – Count the Solutions

Consider the following equation: a1`a2`a3`a4`a5`a6 “ 70. A solution to this equation over the nonnegative
integers is a choice of a nonnegative integer for each of the variables a1, a2, a3, a4, a5, a6 that satisfies the equation.
For example, a1 “ 15, a2 “ 3, a3 “ 15, a4 “ 0, a5 “ 7, a6 “ 30 is a solution. To be different, two solutions have
to differ on the value assigned to some ai. How many different solutions are there to the equation?
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(Hint: Think about splitting a sequence of 70 1’s into 6 blocks, each block consisting of consecutive
1’s in the sequence. The number of 1’s in the i-th block corresponds to the value of ai. Note that
the i-th block is allowed to be empty, corresponding to ai “ 0.)

Using the stars and bars method, we get:

ˆ

70` 6´ 1

6´ 1

˙

“

ˆ

75

5

˙

“ 17, 259, 390

Task 5 – Card Party

At a card party, someone brings out a deck of bridge cards (4 suits with 13 cards in each). N people each pick
2 cards from the deck and hold onto them. What is the minimum value of N that guarantees at least 2 people
have the same combination of suits?

N “ 11 : There are
`

4
2

˘

combinations of 2 different suits, plus 4 possibilities of having 2 cards of the
same suit. This gives 10 different possible combinations of suits (the pigeonhole). Since each person
(pigeon) will fall into 1 pigeonhole (they will end up with some combination of suits), with N “ 11
you can apply the pigeonhole principle. That’s because with N “ 11, there are 11 pigeons and 10
pigeonholes, so at least one pigeonhole will have at least 2 pigeons - 2 people will have the same
combination of suits.

Task 6 – The Pigeonhole Principle

Show that in any group of n people there are two who have an identical number of friends within the group.
(Friendship is bi-directional – i.e., if A is friend of B, then B is friend of A – and nobody is a friend of themselves.)

Solve in particular the following two cases individually:

a) Everyone has at least one friend.

Everyone has between 1 and n ´ 1 friends (i.e., n ´ 1 holes), and there are n people (the
“pigeons”). Since n ą n ´ 1, we can apply the pigeonhole principle to say that at least two
people (pigeons) will have the same number of friends (will fall into the same pigeonhole).

b) At least one person has no friends.

Here, we need to observe that if someone has 0 friends, then nobody has n ´ 1 friends (by the
symmetry of the friendship relation). Then, possible choices are now between 0 and n´2 friends
(i.e., n ´ 1 holes), and there are n people (the “pigeons”). Therefore, applying the pigeonhole
principle since n ą n´1, two of them will have the same number of friends (two pigeons, people,
will fall into the same pigeonhole, number of friends).

Task 7 – A Team and a Captain

Give a combinatorial proof of the following identity:

n

ˆ

n´ 1

r ´ 1

˙

“

ˆ

n

r

˙

r.

Hint: Consider two ways to choose a team of size r out of a set of size n and a captain of the team (who is also
one of the team members).
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Remember that a combinatorial proof just requires that we show both sides are equivalent ways of
counting a situation.

Left hand side: Choose a team of size r and a captain for that team (from among the r) by first
choosing the captain (n choices) and then choosing the rest of the team

`

n´1
r´1

˘

.

Right hand side: Choose a team of size r and a captain for that team by first choosing the team (
`

n
r

˘

choices) and then choosing the captain from among the members of the team (r choices).

Task 8 – Balls from an Urn

Say an urn (a fancy name for a jar that doesn’t have a lid) contains one red ball, one blue ball, and one green
ball. (Other than for their colors, balls are identical.) Imagine we draw two balls with replacement, i.e., after
drawing one ball, with put it back into the urn, before we draw the second one. (In particular, each ball is equally
likely to be drawn.)

a) Give a probability space describing the experiment.

Ω “ tB,R,Gu2 and P pωq “ 1{9 for all ω P Ω.

b) What is the probability that both balls are red? (Describe the event first, before you compute its probability.)

The event is A “ tRRu. Its probability is P pAq “ |A|

9 “ 1
9 because there are 32 “ 9 outcomes

in the sample space, and all outcomes are equally likely.

c) What is the probability that at most one ball is red?

This is just Ac, the complement of A. We know that P pAcq “ 1´ P pAq “ 1´ 1
9 “ 8{9.

d) What is the probability that we get at least one green ball?

This is the event B “ tGR,GB,GG,RG,BGu, and thus P pBq “ |B|

9 “ 5
9 .

e) Repeat b)-d) for the case where the balls are drawn without replacement, i.e., when the first ball is drawn,
it is not placed back from the urn. Thus the two balls drawn have different colors. (Note that this will still
be a uniform probability space.

Here, the probability space changes: First of all, the outcomes RR,GG,BB are not possible
any more, so let us remove them from Ω, which is now Ω “ tBG,BR,GB,GR,RB,RGu. As
before each outcome is equally likely and has probability 1/6. One way to think about this is
that P pωq “ 1

2¨3 “
1
6 for every outcome because we have three choices for the first ball, but only

two for the second.

It can never be that both balls are red – therefore, for b), the probability becomes 0. For c), the
probability is 1, and for d), the event becomes B “ tGR,GB,RG,BGu, and P pBq “ 4 ¨ 16 “

2
3 .

Task 9 – Spades and Hearts

Given 3 different spades and 3 different hearts, shuffle them. (i) What is the sample space and how big is it? (ii)
What is the probability of each outcome in the sample space? (iii) What is PpEq, where E is the event that the
suits of the shuffled cards are in alternating order?

The sample space Ω is all re-orderings possible: there are |Ω| “ 6! such. Each outcome represents
one ordering and all of them have equal probability 1

6! . Now for E, order the spades and hearts
independently, so there are 3!2 ways to do so. Finally choose whether you want hearts or spades first.

All such orderings are equally likely, so PpEq “ |E|

|Ω|
“ 2¨3!2

6! .
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Task 10 – Congressional Tea

Twenty politicians are having tea, 6 Democrats and 14 Republicans.

a) If they only give tea to 10 of the 20 people, what is the probability that they only give tea to Republicans?
(We assume every possible way of giving tea is equally likely.)

The sample space is all possible ways of choosing which 10 people get tea, so |Ω| “
`

20
10

˘

ways.

The event is the ways to give tea to only Republicans, of which there are
`

14
10

˘

ways. So the

probability is
p1410q

p2010q
.

b) If they only give tea to 10 of the 20 people, what is the probability that they give tea to 8 Republicans and
2 Democrats? (We assume every possible way of giving tea is equally likely.)

Similarly to the previous part,
p148 qp

6
2q

p2010q
.

Task 11 – Shuffling Cards

We have a deck of cards, with 4 suits, and 13 cards in each suit. Within each suit, the cards are ordered Ace ą
King ą Queen ą Jack ą 10 ą ¨ ¨ ¨ ą 2. Also, suppose we perfectly shuffle the deck (i.e., all possible shuffles are
equally likely).

What is the probability the first card on the deck is (strictly) larger than the second one?

First off, the sample space Ω here consists of all pairs of cards – which we can represent by their value
and suit, e.g., p4♣, A♢q. There 52 ¨ 51 possible outcomes, therefore P pωq “ 1

52¨51 for all ω P Ω.

Let us now look at the size of the event E containing all pairs where the first card is strictly larger
than the second. Then, the number of pairs of values of cards a and b where a ă b is exactly

`

13
2

˘

.
We can then assign suits to each of them – given the cards are different, all suits are possible for
each, so there are 42 “ 16 choices. Thus, overall,

|E | “
ˆ

13

2

˙

¨ 16 .

Therefore,

P pEq “ |E |
|Ω|

“

`

13
2

˘

¨ 16

52 ¨ 51
“

8

17
.

Task 12 – Robot Wears Socks

Suppose Joe is a k-legged robot, who wears a sock and a shoe on each leg. Suppose he puts on k socks and k
shoes in some order, each equally likely. Each action is specified by saying whether he puts on a sock or a shoe,
and saying which leg he puts it on. In how many ways can he put on his socks and shoes in a valid order? We say
an ordering is valid if, for every leg, the sock gets put on before the shoe. Assume all socks are indistinguishable
from each other, and all shoes are indistinguishable from each other.

First, note that there are 2k possible actions which we will denote by Sock1, Shoe1, . . . , Sockk, Shoek.
Here Socki means that a sock is placed on leg i and similarly Shoej means that a shoe is placed on
leg j.

One way to approach the problem is by imagining that we have 2k empty slots and that each action
can be placed in exactly one of the slots. We can denote the set of slots by t1, 2, . . . , 2ku. First, we
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assign the pair of actions Sock1 and Shoe1 to two of the 2k slots. Note that the two actions must
be ordered Sock1, Shoe1 in a valid ordering. Thus, any choice of two positions(i.e. a subset of size
two from t1, 2, . . . , 2ku) will correspond to exactly one valid ordering of the two actions. Hence, we
have

`

2k
2

˘

valid assignments for the pair of actions Sock1, Shoe1. Next, we assign the pair of actions

Sock2 and Shoe2 to two of the remaining 2k´2 slots. By the same reasoning, there are
`

2k´2
2

˘

valid
assignments. We assign actions until we arrive at Sockk and Shoek for which we only have two slots
left and thus

`

2
2

˘

“ 1 valid assignments. Using the product rule, we have

ˆ

2k

2

˙ˆ

2k ´ 2

2

˙

¨ ¨ ¨

ˆ

2

2

˙

“
2k!

2k

total possible actions.

Alternatively, suppose we describe a sequences of actions such as Sock1, Shoe1, Sock2, Shoe2, . . . , Sockk, Shoek.
There are p2kq! ways to order these actions. Clearly many of these orderings are not valid since it will
often be the case that we put on a shoe before a sock on at least one of the legs. So, let us eliminate
these invalid orderings by focusing on one leg at a time. First, we will focus on the pair of actions
corresponding to the first leg, Sock1, Shoe1. We can eliminate half of the p2kq! orderings because half
of them will have Shoe1 placed before Sock1. Thus, we have p2kq!{2 orderings remaining, orderings
in which Sock1, Shoe1 are in correct order, while the remaining actions might not. Next, we move on
to the second leg and the pair of actions Sock2, Shoe2. Again, we can eliminate half of the p2kq!{2
remaining orderings where Shoe2 is placed before Sock2. This leaves us with p2kq!{22 orderings in
which the pairs Sock1, Shoe1 and Sock2, Shoe2 are placed correctly, but the remaining actions might
not. Repeating the process for all the k legs, we obtain p2kq!{2k.
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Task 13 – Trick or Treat

Suppose on Halloween, someone is too lazy to keep answering the door, and leaves a jar of exactly N total
candies. You count that there are exactly K of them which are kit kats (and the rest are not). The sign says to
please take exactly n candies. Each subset of size n is equally likely to be drawn (and they are drawn all at once,
so order doesn’t matter). Let E be the event that you draw exactly k kit kats. What is P pEq?

The sample space consists of all ways of choosing a subset of n candies out of a total of N , so

|Ω| “

ˆ

N

n

˙

. Therefore,

PpEq “
|E|

|Ω|
“

ˆ

K

k

˙ˆ

N ´K

n´ k

˙

ˆ

N

n

˙

since an outcome in E can be chosen by first selecting which subset of k of the K kitkats are drawn
and then which subset of n´ k of the N ´K other candies are drawn.

Task 14 – Weighted Die

Consider a weighted die such that

- Pp1q “ Pp2q,

- Pp3q “ Pp4q “ Pp5q “ Pp6q, and

- Pp1q “ 3Pp3q.

What is the probability that the outcome is 3 or 4?

By the second axiom of probability, the sum of probabilities for the sample space must equal 1. That
is,

ř6
i“1 Ppiq “ 1. Since Pp1q “ Pp2q and Pp1q “ 3Pp3q, we have that: 1 “ Pp1q ` Pp2q ` Pp3q `

Pp4q ` Pp5q ` Pp6q “ 3Pp3q ` 3Pp3q ` Pp3q ` Pp3q ` Pp3q ` Pp3q “ 10Pp3q
Thus, solving algebraically, Pp3q “ 0.1, so Pp3q “ Pp4q “ 0.1. Since rolling a 3 and 4 are disjoint
events, then Pp3 or 4q “ Pp3q ` Pp4q “ 0.1` 0.1 “ 0.2.
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