Find a group of 3-5 people to sit with
This is to ensure that we get through all the
groups in time when working on problems as
groups :)}
Section 2

More Counting & Probability
LOGISTICS

HW 1 due yesterday
(Late deadline Friday(06/28 @ 11:59pm))

Hw 2 is out
(due Wednesday(07/03 @ 11:59pm))

Office Hours
(times/locations listed on the website)
Homework

- Submissions
 - LaTeX (highly encouraged)
 - overleaf.com
 - template and LaTeX guide posted on course website!
 - Word Editor that supports mathematical equations
 - Handwritten neatly and scanned

- Homework will typically be due on Wednesdays at 11:59pm on Gradescope

- Each assignment can be submitted a max of **48 hours** late
- You have **6 late days total** to use throughout the quarter
 - Anything beyond that will result in a deduction on further late assignments
Content Review
NEW TOPICS!

Binomial Theorem
Inclusion Exclusion
Pigeonhole Principle
Stars and Bars
Probability Spaces and Uniform Probability
Fun Counting Application:

BINOMIAL THEOREM
Fun Counting Application:
BINOMIAL THEOREM

\[(x + y)^n = (x + y) \times (x + y) \times \ldots \times (x + y)\]
Fun Counting Application:

Binomial Theorem

\[(x + y)^n = (x + y) \times (x + y) \times \ldots \times (x + y)\]

Each term in the final sum will choose an x or y from each of the n $(x+y)$’s to get x^ky^{n-k}
Fun Counting Application:

BINOMIAL THEOREM

\[(x + y)^n = (x + y) \times (x + y) \times \ldots \times (x + y)\]

Each term in the final sum will choose an x or y from each of the \(n\) \((x+y)\)s to get \(x^k y^{n-k}\)

The coefficient on \(x^k y^{n-k}\) thus will be \(\binom{n}{k}\)
Fun Counting Application: BINOMIAL THEOREM

(x+y)^n = (x+y) \times (x+y) \times \ldots \times (x+y)

Each term in the final sum will choose an x or y from each of the n (x+y)s to get \(x^k y^{n-k}\)

The coefficient on \(x^k y^{n-k}\) thus will be \(\binom{n}{k}\)

Is this identical to \(\binom{n}{n-k}\)?
Fun Counting Application:

BINOMIAL THEOREM

\[(x + y)^n = (x + y) \times (x + y) \times \ldots \times (x + y)\]

Each term in the final sum will choose an \(x\) or \(y\) from each of the \(n\) \((x+y)s to get \(x^k y^{n-k}\)

The coefficient on \(x^k y^{n-k}\) thus will be \(\binom{n}{k}\)

Is this identical to \(\binom{n}{n-k}\)?

Yes! Choosing a set of \(k\) out of \(n\) things is the same as choosing a set of \(n - k\) things to not include.
Another counting rule: **inclusion-exclusion**

$$|A \cup B| \text{ isn't as simple as } |A| + |B|$$
Another counting rule: **Inclusion-exclusion**

$$|A \cup B| \text{ isn't as simple as } |A| + |B|$$

$$|A \cup B| \text{ is } |A| + |B| - |A \cap B|$$
Another counting rule: **inclusion-exclusion**

|\(A \cup B\)| isn’t as simple as |\(A|+|B\)|

|\(A \cup B\)| is |\(A|+|B|\)−|\(A \cap B\)|

What about |\(A \cup B \cup C\)|?
Another counting rule: **Inclusion-exclusion**

\[|A \cup B| \text{ isn't as simple as } |A|+|B| \]

\[|A \cup B| \text{ is } |A|+|B| - |A \cap B| \]

What about \(|A \cup B \cup C| ? \)

\[|A \cup B \cup C| \text{ is singles - doubles + triples} \]

\[|A|+|B|+|C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \]
Another counting rule: Pigeonhole Principle
Another counting rule:

Pigeonhole Principle

If there are n pigeons with not enough holes for them to stay in (k to be exact), what can we say about at least how many pigeons at least one hole will hold?
Another counting rule: **Pigeonhole Principle**

If there are n pigeons with not enough holes for them to stay in (k to be exact), what can we say about at least how many pigeons at least one hole will hold?

$\text{ceil}(n / k)$
Another counting rule:

STARS AND BARS
Another counting rule: **STARS AND BARS**

How many ways can you distribute n indistinguishable balls into k distinguishable bins?
Another counting rule: **STARS AND BARS**

How many ways can you distribute \(n \) indistinguishable balls into \(k \) distinguishable bins?

Arrange \(n \) balls and \(k - 1 \) dividers
Another counting rule: **STARS AND BARS**

How many ways can you distribute \(n \) indistinguishable balls into \(k \) distinguishable bins?

Arrange \(n \) balls and \(k - 1 \) dividers

\[
\binom{n + k - 1}{n}
\]
PROBABILITY!
PROBABILITY!

- **Sample Space:** The set of all possible outcomes of an experiment, denoted \(\Omega \) or \(S \)
- **Event:** Some subset of the sample space, usually a capital letter such as \(E \subseteq \Omega \)
- **Union:** The union of two events \(E \) and \(F \) is denoted \(E \cup F \)
- **Intersection:** The intersection of two events \(E \) and \(F \) is denoted \(E \cap F \) or \(EF \)
- **Mutually Exclusive:** Events \(E \) and \(F \) are mutually exclusive iff \(E \cap F = \emptyset \)
- **Complement:** The complement of an event \(E \) is denoted \(E^C \) or \(\overline{E} \) or \(\neg E \), and is equal to \(\Omega \setminus E \)
- **DeMorgan’s Laws:** \((E \cup F)^C = E^C \cap F^C\) and \((E \cap F)^C = E^C \cup F^C\)
Each probability is between 0 and 1 inclusive

Probabilities add to 1

If events are *mutually exclusive*,

\[P(A \cup B \cup C) = P(A) + P(B) + P(C) \]

because there are no intersections
PROBABILITY!

- **Axioms of Probability**
 - **Non-negativity:** For any event \(E \), \(\mathbb{P}(E) \geq 0 \)
 - **Normalization:** \(\mathbb{P}(\Omega) = 1 \)
 - **Additivity:** If \(E \) and \(F \) are mutually exclusive events, then
 \[
 \mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F)
 \]

- **Corollaries of these axioms**
 - **Complementation:** \(\mathbb{P}(E) + \mathbb{P}(E^C) = 1 \)
 - **Monotonicity:** If \(E \subseteq F \), \(\mathbb{P}(E) \leq \mathbb{P}(F) \)
 - **Inclusion-Exclusion:** \(\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) - \mathbb{P}(E \cap F) \)

- **Equally Likely Outcomes:** If every outcome in a finite sample space \(\Omega \) is equally likely, and \(E \) is an event, then \(\mathbb{P}(E) = \frac{|E|}{|\Omega|} \)
An event is a subset of the sample space

$E \subseteq \Omega$

If each outcome in the sample space is *equally likely*, the probability of an event is

$$P(E) = \frac{|E|}{|\Omega|}$$

If the union of a set of mutually exclusive events is equal to the sample sets, those events *partition* the sample space.