Find a group of 3-5 people to sit with This is to ensure that we get through all the groups in time when working on problems as groups :)

-------More Counting \& Probability------

LOGISTICS

HW 1 due yesterday
(Late deadline Friday(06/28 @ 11:59pm)
Hw 2 is out
(due Wednesday(07/03 @ 11:59pm)

Office Hours

(times/locations listed on the website)

Homework

- Submissions
- LaTeX (highly encouraged)
- overleaf.com
- template and LaTeX guide posted on course website!
- Word Editor that supports mathematical equations
- Handwritten neatly and scanned
- Homework will typically be due on Wednesdays at 11:59pm on Gradescope
- Each assignment can be submitted a max of $\mathbf{4 8}$ hours late
- You have 6 late days total to use throughout the quarter
- Anything beyond that will result in a deduction on further late assignments

contelir review

Binomial Theorem
Inclusion Exclusion
Pigeonhole Principle
Stars and Bars

Fun Counting Application: BInOMIAL THEOREM

Fun Counting Application: BInOMIAL THCOREm

$$
(x+y)^{n}=(x+y) *(x+y) * \ldots(x+y)
$$

Fun Counting Application: BInOMIAL THeORem

$(x+y)^{n}=(x+y) *(x+y) * \ldots(x+y)$
Each term in the final sum will choose an x or y from each of the n $(x+y)$'s to get $x^{k} y^{n-k}$

Fun Counting Application: BInOmial theorem

$(x+y)^{n}=(x+y) *(x+y) * \ldots(x+y)$
Each term in the final sum will choose an x or y from each of the n $(x+y)$ s to get $x^{k} y^{n-k}$

The coefficient on $x^{k} y^{n-k}$ thus will be ${ }_{n}{ }_{k}$

Fun Counting Application: BHOMIAL THEOREm

$(x+y)^{n}=(x+y) *(x+y) * \ldots(x+y)$
Each term in the final sum will choose an x or y from each of the n $(x+y)$ s to get $x^{k} y^{n-k}$

The coefficient on $x^{k} y^{n-k}$ thus will be ${ }_{n}{ }_{k}$

Is this identical to ${ }_{n} \mathrm{C}_{n-\mathrm{k}}$?

Fun Counting Application: BInOMIAL THCOREm

$(x+y)^{n}=(x+y) *(x+y) * \ldots(x+y)$
Each term in the final sum will choose an x or y from each of the n $(x+y)$ s to get $x^{k} y^{n-k}$

The coefficient on $x^{k} y^{n-k}$ thus will be ${ }_{n} \mathrm{C}_{\mathrm{k}}$

Is this identical to ${ }_{n} \mathrm{C}_{n-\mathrm{k}}$?
Yes! Choosing a set of k out of n things is the same as choosing a set of $n-k$ things
to not include

Another counting rule: inclusion-exclusion

$|\mathrm{A} U \mathrm{~B}|$ isn't as simple as $|\mathrm{A}|+|\mathrm{B}|$

Another counting rule: inclusion-exclusion

$|\mathrm{A} U \mathrm{~B}|$ isn't as simple as $|\mathrm{A}|+|\mathrm{B}|$
$|\mathrm{A} U \mathrm{~B}|$ is $|\mathrm{A}|+|\mathrm{B}|-|\mathrm{A} \cap \mathrm{B}|$

Another counting rule: inclusion-exclusion

$|\mathrm{A} U \mathrm{~B}|$ isn't as simple as $|\mathrm{A}|+|\mathrm{B}|$
$|\mathrm{A} U \mathrm{~B}|$ is $|\mathrm{A}|+|\mathrm{B}|-|\mathrm{A} \cap \mathrm{B}|$

What about |A U B U C|?

Another counting rule: inclusion-exclusion

$|\mathrm{A} U \mathrm{~B}|$ isn't as simple as $|\mathrm{A}|+|\mathrm{B}|$
$|\mathrm{A} U \mathrm{~B}|$ is $|\mathrm{A}|+|\mathrm{B}|-|\mathrm{A} \cap \mathrm{B}|$

What about |A U B U C|?
$|A \operatorname{U} U C|$ is
singles - doubles + triples

$|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$

Another counting rule: PIGeonhole principle

Another counting rule: pIGeonHole principle

If there are \mathbf{n} pigeons with not enough holes for them to stay in (\mathbf{k} to be exact), what can we say about at least how many pigeons at least one hole will hold?

Another counting rule: pIGeonHole principle

If there are \mathbf{n} pigeons with not enough holes for them to stay in (\mathbf{k} to be exact), what can we say about at least how many pigeons at least one hole will hold?

Another counting rule: STARS AnD BARS

Another counting rule: STARS ADD BARS

How many ways can you distribute \mathbf{n} indistinguishable balls into \mathbf{k} distinguishable bins?

Another counting rule: STARS ADD BARS

How many ways can you distribute \mathbf{n} indistinguishable balls into \mathbf{k} distinguishable bins?

Arrange \boldsymbol{n} balls and $\boldsymbol{k} \mathbf{- 1}$ dividers

Another counting rule: STARS ADD BARS

How many ways can you distribute \mathbf{n} indistinguishable balls into \mathbf{k} distinguishable bins?

Arrange \boldsymbol{n} balls and $\boldsymbol{k} \mathbf{- 1}$ dividers

PROBABILITY!

PROBABILTTY!

- Sample Space: The set of all possible outcomes of an experiment, denoted Ω or S
- Event: Some subset of the sample space, usually a capital letter such as $E \subseteq \Omega$
- Union: The union of two events E and F is denoted $E \cup F$
- Intersection: The intersection of two events E and F is denoted $E \cap F$ or $E F$
- Mutually Exclusive: Events E and F are mutually exclusive iff $E \cap F=\emptyset$
- Complement: The complement of an event E is denoted E^{C} or \bar{E} or $\neg E$, and is equal to $\Omega \backslash \mathrm{E}$
- DeMorgan's Laws: $(E \cup F)^{C}=E^{C} \cap F^{C}$ and $(E \cap F)^{C}=E^{C} \cup F^{C}$

PROBABILTTY!

Each probability is between 0 and 1 inclusive

Probabilities add to 1

If events are mutually exclusive, $P(A \cup B U C)=P(A)+P(B)+P(C)$ because there are no intersections

PROBABILTTY!

- Axioms of Probability
- Non-negativity: For any event $E, \mathbb{P}(E) \geq 0$
- Normalization: $\mathbb{P}(\Omega)=1$
- Additivity: If E and F are mutually exclusive events, then

$$
\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)
$$

- Corollaries of these axioms
- Complementation: $\mathbb{P}(E)+\mathbb{P}\left(E^{C}\right)=1$
- Monotonicity: If $E \subseteq F, \mathbb{P}(E) \leq \mathbb{P}(F)$
- Inclusion-Exclusion: $\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F)$
- Equally Likely Outcomes: If every outcome in a finite sample space Ω is equally likely, and E is an event, then $\mathbb{P}(E)=\frac{|E|}{|\Omega|}$

PROBABILITY!

Sample Space

An event is a subset of the sample space

$$
E \subseteq \Omega
$$

If each outcome in the sample space is equally likely, the probability of an event is

$$
P(\mathbb{B})=|\underline{B}| /|Q|
$$

If the union of a set of mutually exclusive events is equal to the sample sets, those events partition the sample space

