Section 1

Review

- Sum rule. If you can choose from EITHER one of n options, OR one of m options with NO overlap with the previous n, then the number of possible outcomes of the experiment is $n+m$
- Product rule. In a sequential process with m steps, if there are n_{1} choices for the 1 st step, n_{2} choices for the 2nd step (given the first choice), ..., and n_{m} choices for the m th step (given the previous choices), then the total number of outcomes is $n_{1} n_{2} \ldots n_{m}$
- Number of ways to order n distinct objects: $n!=n \cdot(n-1) \cdots 3 \cdot 2 \cdot 1$
- Number of ways to select from n distinct objects:
- Permutations (number of ways to linearly arrange k objects out of n distinct objects, when the order of the k objects matters):

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

- Combinations (number of ways to choose k objects out of n distinct objects, when the order of the k objects does not matter):

$$
\frac{n!}{k!(n-k)!}=\binom{n}{k}=C(n, k)
$$

- Complementary Counting: If asked to find the number of ways to do X, you can: (1) find the total number of ways to do everything and then (2) subtract the number of ways to not do X.

The rest of these will be covered in class on Friday.

- Binomial theorem. $\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}:(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$
- Principle of Inclusion-Exclusion (PIE): 2 events: $|A \cup B|=|A|+|B|-|A \cap B|$ 3 events: $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$ In general: + singles - doubles + triples - quads $+\ldots$
- Counting when there are repeats - multinomial coefficients. Suppose there are n objects, but only k are distinct, with $k \leqslant n$. (For example, "godoggy" has $n=7$ objects (characters) but only $k=4$ are distinct: $(g, o, d, y))$. Let n_{i} be the number of times object i appears, for $i \in\{1,2, \ldots, k\}$. (For example, ($3,2,1,1$), continuing the "godoggy" example.) The number of distinct ways to arrange the n objects is $\binom{n}{n_{1}, \ldots, n_{k}}=\frac{n!}{n_{1}!\ldots . n_{k}!}$

Task 1 - Sets
(a) For each one of the following sets, give its cardinality, i.e., indicate how many elements it contains:

- $A=\varnothing$
- $B=\{\varnothing\}$
- $C=\{\{\varnothing\}\}$
- $D=\{\varnothing,\{\varnothing\}\}$
(b) Let $S=\{a, b, c\}$ and $T=\{c, d\}$. Compute:
- $S \cup T$
- $S \cap T$
- $S \backslash T$
$-2^{S \backslash T}$
- $S \times T$

Task 2 - Basic Counting

a) Credit-card numbers are made of 15 decimal digits, and a 16 th checksum digit (which is uniquely determined by the first 15 digits). How many credit-card numbers are there?
b) How many positive divisors does $1440=2^{5} 3^{2} 5$ have?
c) How many ways are there to arrange the CSE 312 staff on a line (11 TAs, two professors) for a group picture?
d) How many ways are there to arrange the CSE 312 staff on a line so that Professors Tessaro and Beame are at the two ends of the line?

Task 3 - Seating
How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if.
a) ... all couples are to get adjacent seats?
b)anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

Task 4 - Weird Card Game

In how many ways can a pack of fifty-two cards (in four suits of thirteen cards each) be dealt to thirteen players, four to each, so that every player has one card from each of the suits?

Task 5 - Full Class

There are 40 seats and 40 students in a classroom. Suppose that the front row contains 10 seats, and there are 5 students who must sit in the front row in order to see the board clearly. How many seating arrangements are possible with this restriction?

There are 6 security professors and 7 theory professors taking part in an escape room. The solution requires that they choose 4 pairs, each consisting of one security professor and one theory professor. How many options for pairings do they have?

Task 7 - Lizards and Snakes!

Loudon has three pet lizards (Rango, a gecko named Gordon, and a goanna named Joanna) as well as two small pet snakes (Kaa and Basilisk) but only 4 terrariums to put them in. In how many different ways can he put his 5 pets in these 4 terrariums so that no terrarium has both a snake and a lizard?

Task 8 - Birthday Cake
A chef is preparing desserts for the week, starting on a Sunday. On each day, only one of five desserts (apple pie, cherry pie, strawberry pie, pineapple pie, and cake) may be served. On Thursday there is a birthday, so cake must be served that day. On no two consecutive days can the chef serve the same dessert. How many dessert menus are there for the week?

Task 9 - Photographs
Suppose that 8 people, including you and a friend, line up for a picture. In how many ways can the photographer organize the line if she wants to have fewer than 2 people between you and your friend?

Task 10 - Extended Family Portrait

A group of n families, each with m members, are to be lined up for a photograph. In how many ways can the $n m$ people be arranged if members of a family must stay together?

The material for the following questions has not yet been covered in lecture, but you may find them useful references for the homework.

Task 11 - HBCDEFGA

How many ways are there to permute the 8 letters A, B, C, D, E, F, G, H so that A is not at the beginning and H is not at the end?

Task 12 - Binomial Theorem
What is the coefficient of z^{36} in $\left(-2 x^{2} y z^{3}+5 u v\right)^{312}$?

Task 13 - Multinomial Coefficients
How many ways can we arrange the letters in 'TEDDYBEAR'?

