

Section 6

CLT and Joint Distributions

CONTENT

this PDF is really messy :(

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

use the Phi Table to easily look up the value of P(Z < z)

- 1. Find μ)/ σ^2 of normal RV X
- 1. Standardize RV X~N(μ , σ^2) to get (X- μ)/ σ^2 ~ Z ~ N(0,1)
- 2. Use **Phi table** to get appropriate value with $Z = (X-\mu)/\sigma^2$
- 3. Solve for X

properties of the normal distribution

Closure for Normal Distribution

Let X~N(μ , σ^2). Then aX + b~N(a μ + b, b² σ^2)

"Reproductive" Property

Let X1,...,Xn be independent normal RVs with E[Xi]= μ and Var(Xi= σ i

$$X = \sum_{i=1}^{n} (a_i X_i + b) \sim N \left(\sum_{i=1}^{n} (a_i \mu_i + b), \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right)$$

properties of the normal distribution

Closure for Normal Distribution

Let X~N(μ , σ^2). Then aX + b~N(a μ + b, b² σ^2)

"Reproductive" Property

Let X1,...,Xn be independent normal RVs with E[Xi]= μ and Var(Xi= σ i

$$X = \sum_{i=1}^{n} (a_i X_i + b) \sim N \left(\sum_{i=1}^{n} (a_i \mu_i + b), \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right)$$

- By symmetry of normal distribution, P(X < -k) = P(X > k)
- $\Phi(a) = P(Z < a)$ where Z (standard normal) follows N(0, 1)
- Φ(-k) = P(Z < k) = P(Z>k) = 1-P(Z < k) = 1-Φ(k)
 Λ this is useful because negative values aren't on the table!

central limit

if $X = X_1 + X_2 + ... + X_n$ are iid where $E[Xi] = \mu$ and $Var(Xi) = \sigma^2$, X can be approximated by a <u>normal distribution</u> $X \sim N(n\mu, n\sigma^2)$ as n becomes really large

this also means that as n increases, $(X-\mu / \sigma^{2}) \sim Z \sim N(0,1)$

if Xi is discrete random variables, use continuity correction because we'd be using a continuous distribution to approximate a discrete distribution

To estimate probability that discrete RV lands in (integer) interval {a,b} compute probability continuous approximation lands in interval [a-0.5, b+0.5]

- 1. set up the problem (what do we want to solve for/what is the probability we want to be true?)
 - 2. if the distribution is discrete, apply continuity correction here
- 2. apply CLT to X = Xi + ... + Xn
- 3. convert to standard normal

4. solve!

shows the distribution for two (or more) random variables

$$p_{X,Y}(x, y) = P(X=x, Y=y)$$

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$	$f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$
Joint range/support		
$\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \leqslant x, s \leqslant y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Independence	$\forall x, y, p_{X,Y}(x,y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x,y) = f_X(x)f_Y(y)$
must have	$\Omega_{X,Y} = \Omega_X \times \Omega_Y$	$\Omega_{X,Y} = \Omega_X \times \Omega_Y$
Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation	$\mathbb{E}[X Y=y] = \sum_{x} x \cdot p_{X Y}(x y)$	$\mathbb{E}[X Y=y] = \int_{-\infty}^{\infty} x f_{X Y}(x y) dx$

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

these are the values X takes on

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

- (a) Identify the range of X (Ω_X), the range of Y (Ω_Y), and their joint range ($\Omega_{X,Y}$).
 - Based on the table (specifically what's highlighted in yellow and pink), we know that the range of X is {0, 1}, and the range of Y is {1,2,3}

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

- (a) Identify the range of X (Ω_X), the range of Y (Ω_Y), and their joint range ($\Omega_{X,Y}$).
 - Based on the table (specifically what's highlighted in yellow and pink), we know that the range of X is {0, 1}, and the range of Y is {1,2,3}
 - The <u>joint range</u> is the set of *pairs of x and y* that both X and Y can take on at the same time. In other word the pairs of values x and y such that the joint PMF P(X=x, Y=y) is greater than 0.

Suppose *X* and *Y* have the following joint PMF:

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

- (a) Identify the range of X (Ω_X), the range of Y (Ω_Y), and their joint range ($\Omega_{X,Y}$).
 - Based on the table (specifically what's highlighted in yellow and pink), we know that the range of X is {0, 1}, and the range of Y is {1,2,3}
 - The <u>joint range</u> is the set of pairs of x and y that both X and Y can take on at the same time. In other word the pairs of values x and y such that the joint PMF P(X=x, Y=y) is greater than 0.
 - In this case, that would be the set of pairs: $\Omega_{xy} = \{(0, 2), (0,3), (1,1), (1,3)\}$
 - We <u>don't</u> include the pairs (0, 1) and (1,2) because the joint pmf is 0 for those pairs

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

- The marginal PMF for X is just like asking what the PMF for X is based on the joint PMF
- There are only two values in the range of X so we can try defining this PMF by looking at the probabilities for each value separately!
- First, we want to find P(X=0) -

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

- The marginal PMF for X is just like asking what the PMF for X is based on the joint PMF
- There are only two values in the range of X so we can try defining this PMF by looking at the probabilities for each value separately!
- First, we want to find P(X=0) Based on the joint PMF, and using LOTP P(X=0) = P(X=0, Y=1)+P(X=0,Y=2) + P(X=0,Y=3)=0+0.2+0.1-0,3

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

- The marginal PMF for X is just like asking what the PMF for X is based on the joint PMF
- There are only two values in the range of X so we can try defining this PMF by looking at the probabilities for each value separately!
- First, we want to find P(X=0) Based on the joint PMF, and using LOTP P(X=0) = P(X=0, Y=1)+P(X=0,Y=2) + P(X=0,Y=3)=0+0.2+0.1-0.3
- Similarly, P(X=1) = 0.3+0+0.4

Suppose *X* and *Y* have the following joint PMF:

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

- The marginal PMF for X is just like asking what the PMF for X is based on the joint PMF
- There are only two values in the range of X so we can try defining this PMF by looking at the probabilities for each value separately!
- First, we want to find P(X=0) Based on the joint PMF, and using LOTP P(X=0) = P(X=0, Y=1)+P(X=0,Y=2) + P(X=0,Y=3)=0+0.2+0.1-0,3
- Similarly, P(X=1) = 0.3+0+0.4
- In general, the marginal pmf looks like:

$$p_X(x) = \sum_{y \in \Omega_Y} p_{X,Y}(x,y))$$

Suppose X and Y have the following joint PMF:

X/Y	1	2	3
0	0	0.2	0.1
1	0.3	0	0.4

- (d) Are *X* and *Y* independent? Why or why not?
- If we want to prove that X and Y <u>are</u> independent, we would need to show <u>both</u> of the conditions to be true:

$$\forall x, y, p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

$$\Omega_{X,Y} = \Omega_X \times \Omega_Y$$

• However, note that the second condition is not true in this case! (take a look at the ranges we found in part a). So, X and Y are not independent.

Thanks for coming today!