CsE 312

SECTION 5 ZOO OF RAMDOm VARIABLES

- Welcome back, everyone! -

K

(01)

ANNOUNCEMENTS

SCHEDULC REMINDERS

HW 3 GRADES WERE ReLeASED

(regrade requests open and close after a week)

HW4 WAS ReLeASed

Due next Wednesday

LOE

When working with linearity of expectation, remember to
first define the RVs and the summation relationships
don't worry how the individual RVs are distributed
then apply linearity of expectation and find each value

VARIANCE - how "different" are values from the expectation "on average"

$$
\operatorname{Var}(\mathrm{X})=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}(\mathrm{X}))^{2}\right]=\Sigma_{\mathrm{x}}\left(\mathrm{P}(\mathrm{X}=\mathrm{x}) *(\mathrm{X}-\mathrm{E}(\mathrm{X}))^{2}\right)
$$

expected value of the squared distance between each RV outcome and the expected value of RV
add up all the squared distances weighted by their probabilities

Properties

$$
\begin{gathered}
\operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X) \\
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
\end{gathered}
$$

J

Independent RV

What does independence mean for random variables?

Random variables X and Y are independent if -

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

Knowing the value of X doesn't help "guess" what Y is
it's a useful property! if X and Y are independent random variables then -
$E(X \cdot Y)=E[X] \cdot E[Y]$
$\operatorname{Var}(X+Y)=\operatorname{Var}[X]+\operatorname{Var}[Y]$

Random variables X and Y are independent if -

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

Knowing the value of X doesn't help "guess" what Y is
Additionally, there's independent and identically distributed (aka, "i.i.d.") random variables

Identically distributed means the random variables have the same pmf -
$P(X=k)=P(Y=k) \quad$ for any value k

For example, rolling a die twice, where X is the first roll number and Y is the second roll number

ZOO OF RV'S

zoo of discrete random variables!

ZOO OF DISCRETE RADDOm VARIABLes

Random variables allow us to represent different random experiments/situations

We've seen how tedious computing pmfs, expectations, and variances can be.

There are some common situations that call for a random variable that is too complex to analyze, so we derive pmfs, expectations, and variance for this "zoo" of RVs.

unlionm mODeLS SITUATIONS WHERE EACH ouTcome is equally LIKeLy

X ~ Uniform (a, b) if X is equally likely
to take on any value between a and b

$$
p_{X}(k)=\frac{1}{b-a+1} \quad \mathbb{E}[X]=\frac{a+b}{2} \quad \operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
$$

A random variable X representing the outcome of rolling a fair 6 sided dice

$$
\text { X-Uniform }(1,6)
$$

choosing a random value between 1 and 6 with each outcome equally likely

Bernoulll mmaran mODeLS STTUATIONS WHERE THE RV CAM TAKE On 0 OR 1 (WHeTHeR Success OR nOT)

X ~ Bernoulli(p) if X is 1 with
probability of p

$$
p_{X}(k)=\left\{\begin{array}{cc}
p, & k=1 \\
1-p, & k=0
\end{array} \quad \mathbb{E}[X]=p \quad \operatorname{Var}(X)=p(1-p)\right.
$$

X represents whether outcome of rolling a fair 6 sided dice is even (1) or not (0) X-Bernoulli(3/6)
probability of $3 / 6$ for "success"

BIHOMAL

models siruations when we count the \# Times an event occurs in in tries

X ~ Binomial (n, p) means X represents the number of times an event with probability p happens after n trials

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \mathbb{E}[X]=n p \quad \operatorname{Var}(X)=n p(1-p)
$$

X represents the number of times the dice rolled to a 6 during 9 dice rolls

X-Binomial ($9,1 /$)

probability of success (rolling a 6) on a single dice roll is $\%$, and 9 trials (rolls)

Geometric models siruations when we count THE \# TRIALS UNTIL some event occurs

X ~ Geometric (p) means X represents the number of trials before success (an event with probability p happens)

$$
p_{X}(k)=(1-p)^{k-1} p, \quad \mathbb{E}[X]=\frac{1}{p} \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

X represents the number of times we roll a 6 sided die, before it rolls a 6

X-Geometric($1 /$)

on a single dice roll, there's a probability of $1 / 6$ for success (that it rolls a 6)

negative binomial
 (RELATED TO GEOMETRIC) mODELS STTUATIONS WHERE We COUHT \# TRIALS TO GeT SOme number of successes

$X \sim \operatorname{NegBin}(r, p)$ means X represents the number of trials to get r successes (probability of success on a single trial is p)

$$
p_{X}(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r} \quad \mathbb{E}[X]=\frac{r}{p} \quad \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
$$

X represents number of dice rolls before we get 4 rolls with a 6

X-NegBin(4, 1/6)

because we want to have 4 trials (rolls) with success, and a success (rolling 6) has probability $1 / 6$

poisson

models situations WITH TIme - HOW many successes In A UnIT OF TIme

X ~ Poisson $(\boldsymbol{\lambda})$ means X represents the number of success in a unit of time, where $\boldsymbol{\lambda}$ is average rate of successes per unit of time

$$
p_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

$$
\mathbb{E}[X]=\lambda
$$

$$
\operatorname{Var}(X)=\lambda
$$

X represents number of people born during a particular minute

X-Poisson (λ)

where $\boldsymbol{\lambda}$ represents the average birth rate per minute

HYPERGEOMETRIC

mODELS SITUATIONS WITH CHOOSIDG - HOW MANY "SUccesses" DO YOU GeT WHen choosing WITHOUT Replacement

Number of ways you can choose n items with k successes

X ~ HypGeo(N,K,n) means X represents the number of successes out of n draws from N items with K successes

$$
x+\frac{1097}{6}
$$

$$
\mathbb{E}[X]=n \frac{K}{N}
$$

$$
\operatorname{Var}(X)=n \cdot \frac{K(N-K)(N-n)}{N^{2}(2 N-1)}
$$

X represents number of Kit-Kats we will get when drawing 30 candies from a bowl of 100 candies that contain 10 Kit-Kats

X-HypGeo($100,10,30$)

Discrete vs Continuous

 Random var.
discrete

the range consists of two "types" of random vars
values

discrete

the range consists of finite/countably infinite values

continuous

the range consists of uncountably infinite values (for example time is not discrete)

discrete

the range consists of finite/countably infinite values

PMF (prob. mass function)

$$
p_{x}(k)=P(X=k)
$$

continuous

two "types" of random vars

the range consists of uncountably infinite values (for example time is not discrete)

discrete

the range consists of finite/countably infinite values

PMF (prob. mass function)

$$
p_{x}(k)=P(X=k)
$$

continuous

two "types" of

 random varsthe range consists of uncountably infinite values (for example time is not discrete)

PMF (prob. mass function) $\mathrm{p}_{\mathrm{x}}(\mathrm{k})=\mathrm{P}(\mathrm{X}=\mathrm{k})=0$

discrete

the range consists of finite/countably infinite values

PMF (prob. mass function)

$$
p_{x}(k)=P(X=k)
$$

continuous

the range consists of uncountably infinite values (for example time is not discrete)

PDF (prob. density function) $f_{\mathrm{x}}(\mathrm{k}) \quad!=\mathrm{P}(\mathrm{X}=\mathrm{k})$

discrete vs. continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Zoo of continuous RVs

Uniform RV (continuous version)

X~Unif(a, b) randomly takes on any real number between a and b

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { if } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbb{E}[X]=\frac{a+b}{2}
$$

$$
\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
$$

Exponential RV

$\mathbf{X} \sim \operatorname{Exp}(\lambda)$ tells how much time till a certain event happens
(λ is the rate of time)
think of this as the "continuous version" $f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geqslant 0 \\ 0 & \text { otherwise }\end{cases}$
of the geometric distribution!
don't confuse this with the Poisson distribution just bc it's related with
time, they're very different!
(Poisson is number of events in a certain time frame)

$$
\mathbb{E}[X]=\frac{1}{\lambda}
$$

$$
\operatorname{Var}(X)=\frac{1}{\lambda^{2}}
$$

$$
F_{X}(x)=1-e^{-\lambda x}
$$

$F_{X}(x)=P(X<=x)$ this is the integral of $f_{X}(x)$

