
CSE 312: Foundations of Computing II Summer 2024

Section 4 – Solutions
Review

- Random Variable (rv): A numeric function X : Ω Ñ R of the outcome.

- Range/Support: The support/range of a random variable X, denoted ΩX , is the set of all possible values that
X can take on.

- Discrete Random Variable (drv): A random variable taking on a countable (either finite or countably infinite)
number of possible values.

- Probability Mass Function (pmf) for a discrete random variable X: a function pX : ΩX Ñ r0, 1s with
pX pxq “ PpX “ xq that maps possible values of a discrete random variable to the probability of that value
happening, such that

ř

x pXpxq “ 1.

- Cumulative Distribution Function (CDF) for a random variable X: a function FX : R Ñ R with FX pxq “

PpX ď xq

- Expectation (expected value, mean, or average): The expectation of a discrete random variable is defined
to be ErXs “

ř

x xpXpxq “
ř

x xPpX “ xq. The expectation of a function of a discrete random variable gpXq

is ErgpXqs “
ř

x gpxqpXpxq.

- Linearity of Expectation: Let X and Y be random variables, and a, b, cP R. Then, EraX ` bY ` cs “

aErXs ` bErY s ` c. Also, for any random variables X1, . . . , Xn,

ErX1 ` X2 ` . . . ` Xns “ ErX1s ` ErX2s ` . . . ` ErXns.

- Variance: Let X be a random variable and µ “ ErXs. The variance of X is defined to be VarpXq “

ErpX ´ µq2s. Notice that since this is an expectation of a non-negative random variable (pX ´ µq
2), variance

is always non-negative. With some algebra, we can simplify this to VarpXq “ ErX2s ´ ErXs2.

- Standard Deviation: Let X be a random variable. We define the standard deviation of X to be the square
root of the variance, and denote it σ “

a

VarpXq.

- Property of Variance: Let a, b P R and let X be a random variable. Then, VarpaX ` bq “ a2VarpXq.

- Independence: Random variables X and Y are independent iff

@x@y, PpX “ x X Y “ yq “ PpX “ xqPpY “ yq

In this case, we have ErXY s “ ErXsErY s (the converse is not necessarily true).

- i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) iff they are
independent and have the same probability mass function.

- Variance of Independent Variables: If X is independent of Y , Var pX ` Y q “ Var pXq ` VarpY q. This
depends on independence, whereas linearity of expectation always holds. Note that this combined with the
above shows that @a, b, c P R and if X is independent of Y , VarpaX ` bY ` cq “ a2VarpXq ` b2VarpY q.

Task 1 – Content Review

a) True or false: the range of a random variable X is the set of probabilities corresponding to the possible
values X can take on.
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False. The range (or support) of a random variable is the set of all possible values it can take
on.

b) What is the relationship between standard deviation and variance of a random variable X?

σ “ pVarpXqq2

σ “ VarpX2q

VarpXq “ σ2

VarpXq “ σ2 (or σ “
a

VarpXq in the above review)

c) Let X be the random variable representing the outcome of taking the sum of a 3-dice roll of 6-sided dice.
Which function would you use to determine the probability that X “ 7?

CDF (cumulative distribution function)

PMF (probability mass function)

PMF. We use the PMF when we want to find the probability of a specific value of a random
variable occurring.

d) Let X be the random variable representing the outcome of taking the sum of a 3-dice roll of 6-sided dice.
Which function would you use to determine the probability that X ď 7?

CDF (cumulative distribution function)

PMF (probability mass function)

CDF. The CDF gives us exactly PpX ď xq.

e) A random variable X has the PMF

pXpxq “

$

’

’

’

&

’

’

’

%

1{4 x “ ´1

1{4 x “ 0

1{2 x “ 2

0 otherwise

What is ErXs?

-1/4

3/4

1

2

3/4.

ErXs “
ÿ

xPΩX

xpXpxq “ ´1 ¨ 1{4 ` 0 ¨ 1{4 ` 2 ¨ 1{2 “ 3{4.

f) A random variable X has the PMF

pXpxq “

$

’

’

’

&

’

’

’

%

1{4 x “ ´1

1{4 x “ 0

1{2 x “ 2

0 otherwise

What is VarrXs?
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3{4

1

pp1{4q ` 2q ´ pp 3
4 q2q “ 27{16

pp1{4q ` 2q ` pp 3
4 q2q “ 45{16

27{16.

VarrXs “ ErX2s ´ ErXs2 “
ÿ

xPΩX

x2pXpxq ´
ÿ

xPΩX

xpXpxq

“ pp´1q2 ¨ 1{4 ` 02 ¨ 1{4 ` 22 ¨ 1{2q ´ pp3{4q2q

“ 27{16

Task 2 – Identify that range!

Identify the support/range ΩX of the random variable X, if X is...

a) The sum of two rolls of a six-sided die.

X takes on every integer value between the min sum 2, and the max sum 12.
ΩX “ t2, 3, ..., 12u

b) The number of lottery tickets I buy until I win it.

X takes on all positive integer values (I may never win the lottery).
ΩX “ t1, 2, ...u “ N

c) The number of heads in n flips of a coin with 0 ă Ppheadq ă 1.

X takes on every integer value between the min number of heads 0, and the max n.
ΩX “ t0, 1, ..., nu

d) The number of heads in n flips of a coin with Ppheadq “ 1.

Since Ppheadq “ 1, we are guaranteed to get n heads in n flips.
ΩX “ tnu

Linearity of Expectation Problems
The next few problems are expectation and linearity of expectation problems. When finding the expected value
of a random variable, first think about if the range is small enough so we can come up with the PMF and use
the definition of expectation. Also, think about if there is a random variable from the zoo this random variable
follows. If neither is possible, we will most likely want to use linearity Here’s a general template for that!

1. Decompose. Write the random variable X as a sum of random variables: X “ X1 `X2 ` ...`Xn. Often,
these Xi’s are indicator random variables, especially if we’re dealing with some kind of count.

2. Apply LoE. Apply LoE to E rXs: E rXs “ E rX1s ` E rX2s ` ... ` E rXns “
řn

i“1 E rXis.

3. Conquer. Compute each of E rXis and the plug it in to get the final answer.

Task 3 – Hungry Washing Machine
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You have 10 pairs of socks (so 20 socks in total), with each pair being a different color. You put them in the
washing machine, but the washing machine eats 4 of the socks chosen at random. Every subset of 4 socks is
equally probable to be the subset that gets eaten. Let X be the number of complete pairs of socks that you have
left.

a) What is the range of X, ΩX (the set of possible values it can take on)? What is the probability mass
function of X?

The washing machine eats 4 socks every time. It can either eat a single sock from 4 pairs of
socks, leaving us with 6 complete pairs, or a single sock from 2 pairs and a matching pair, leaving
us with 7 complete pairs, or 2 pairs of matching socks, leaving us with 8 complete pairs. That is,

ΩX “ t6, 7, 8u .

We are dealing with a sample space with equally likely outcomes. As such, we can use the formula

PpEq “
|E|

|Ω|
. We know that |Ω| “

`

20
4

˘

because the washing machine picks a set of 4 socks out

of 20 possible socks. To define the pmf of X, we consider each value in the range of X.

- For k “ 6, we first pick 4 out of 10 pairs of socks from which we will eat a single sock (
`

10
4

˘

ways), and for each of these 4 pairs we have two socks to pick from (
`

2
1

˘4
ways). Using the

product rule, we get |X “ 6| “
`

10
4

˘

24.

- For k “ 7, we first pick 1 out of 10 pairs of socks to eat in its entirety (
`

10
1

˘

ways), and then

2 out of the 9 remaining pairs from which we will eat a single sock (
`

9
2

˘

ways), and for each

of these 2 pairs we have two socks to pick from (
`

2
1

˘2
ways). Using the product rule, we get

|X “ 7| “ 10
`

9
2

˘

22.

- For k “ 8, we pick 2 out of 10 pairs of socks to eat (
`

10
2

˘

ways). We get |X “ 8| “
`

10
2

˘

.

Thus,

pXpkq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p10
4 q24

p20
4 q

k “ 6

10p9
2q2

2

p20
4 q

k “ 7

p10
2 q

p20
4 q

k “ 8

0 otherwise

b) Find FXpkq, the CDF for X.

We can find the CDF by summing up the values in the PMF. For k ă 6, the probability is 0 since
there are no outcomes for these values. For 6k ă 7, the CDF is the probability of X being 6.
For 7k ă 8, we add the probability of X being 7 to the previous cumulative probability. Finally,
for k8, the CDF is 1 since we have included all possible outcomes.
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FXpkq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 k¡6
p10

4 q24

p20
4 q

6 ď k ă 7

p10
4 q24

p20
4 q

`
10p9

2q2
2

p20
4 q

7 ď k ă 8

1 k ě 8

c) Find E rXs from the definition of expectation.

We calculate directly from the formula for expectation:

ErXs “
ÿ

kPΩX

k ¨ pXpkq “ 6 ¨

`

10
4

˘

24
`

20
4

˘ ` 7 ¨
10

`

9
2

˘

22
`

20
4

˘ ` 8 ¨

`

10
2

˘

`

20
4

˘ “
120

19
.

d) Find E rXs using linearity of expectation.

For i P r10s, let Xi be 1 if pair i survived, and 0 otherwise. Then, X “
ř10

i“1 Xi. But

ErXis “ 1 ¨ PpXi “ 1q ` 0 ¨ PpXi “ 0q “ PpXi “ 1q “
p18

4 q

p20
4 q

, where the numerator indicates the

number of ways of choosing 4 out the 18 remaining socks (we spare our chosen pair i). Hence,

ErXs “ Er

10
ÿ

i“1

Xis “

10
ÿ

i“1

ErXis “

10
ÿ

i“1

`

18
4

˘

`

20
4

˘ “ 10

`

18
4

˘

`

20
4

˘ “
120

19

e) Which way was easier? Doing both (a) and (b), or just (c)?

Part (c) is was probably much easier. In this problem, you may have found part (a) and (b) easier,
because there were only 3 possible values in the range of X. However, in general computing the
probability mass function of complicated random variables (ones with hundreds of elements in
their range) can be very difficult. Often it is much easier to use linearity of expectation and
compute the probability mass function of simpler random variables.

Task 4 – 3-sided Die

Let the random variable X be the sum of two independent rolls of a fair 3-sided die. (If you are having trouble
imagining what that looks like, you can use a 6-sided die and change the numbers on 3 of its faces.)

a) What is the probability mass function of X?
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First let us define the range of X. A three sided-die can take on values 1, 2, 3. Since X is the
sum of two rolls, the range of X is ΩX “ t2, 3, 4, 5, 6u.

We can then define the pmf of X. To that end, we must define two random variables R1, R2 with
R1 being the roll of the first die, and R2 being the roll of the second die. Then, X “ R1 ` R2.
Note that ΩR1 “ ΩR2 “ t1, 2, 3u. With that in mind we can find the pmf of X:

pXpkq “ PpX “ kq “
ÿ

iPΩR1

PpR1 “ i, R2 “ k ´ iq

“
ÿ

iPΩR1

PpR1 “ iq ¨ PpR2 “ k ´ iq (By independence of the rolls)

“
ÿ

iPΩR1

1

3
¨ pR2pk ´ iq

“
1

3
ppR2pk ´ 1q ` pR2pk ´ 2q ` pR2pk ´ 3qq

At this point, we can evaluate the pmf of X for each value in the range of X, noting that
pR2pk ´ iq “ 0 if k ´ i R ΩR2, 1{3 otherwise. We get:

pXpkq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1{9 k “ 2

2{9 k “ 3

3{9 k “ 4

2{9 k “ 5

1{9 k “ 6

0 otherwise

One could also list out the possible values of the first two rolls and use a table to find the marginal
pmf of X by summing up the entries of each row for each k P ΩX .

b) What is the cumulative distribution function of X, partitioning the intervals on each possible value of X in
its range?

Note that from part a), we know that the range of X is ΩX “ t2, 3, 4, 5, 6u.

Remember that the CDF FXpkq is the probability that X ď k. From the definition of CDF, the
values that X can take, and the pmf of X, we get:

FXpkq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 k ă 2

1{9 2 ď k ă 3

3{9 3 ď k ă 4

6{9 4 ď k ă 5

8{9 5 ď k ă 6

1 6 ď k

c) Find E rXs directly from the definition of expectation.

E rXs “

6
ÿ

k“2

kpXpkq “ 2 ¨
1

9
` 3 ¨

2

9
` 4 ¨

3

9
` 5 ¨

2

9
` 6 ¨

1

9
“ 4
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d) Find E rXs again, but this time using linearity of expectation.

Let R1 be the roll of the first die, and R2 the roll of the second. Then, X “ R1 ` R2.
By linearity of expectation, we get:

E rXs “ ErR1 ` R2s “ ErR1s ` ErR2s

We compute:

ErR1s “
ÿ

iPΩR1

i ¨ PpR1 “ iq “
ÿ

iPΩR1

i ¨
1

3
“

1

3
p1 ` 2 ` 3q “ 2

Similarly, ErR2s “ 2, since the rolls are independent.

Plugging into our expression for the expectation of X gives us:

ErXs “ 2 ` 2 “ 4

Task 5 – Practice

a) Let X be a random variable with pXpkq “ ck for k P t1, . . . , 5u “ ΩX , and 0 otherwise. Find the value
of c that makes X follow a valid probability distribution and compute its mean and variance (ErXs and
Var pXq).

For X to follow a valid probability distribution, we must have
ř

kPΩX
pXpkq “ 1. We can solve

for c so that the equality holds. We know:
ÿ

kPΩX

pXpkq “
ÿ

kPΩX

ck “ c
ÿ

kPΩX

k “ c ¨ p1 ` 2 ` 3 ` 4 ` 5q “ 15c

So for the normalization of the pmf of X to hold, we must choose c “ 1{15.
We can now use the definition of expectation:

ErXs “ 1 ¨
1

15
` 2 ¨

2

15
` 3 ¨

3

15
` 4 ¨

4

15
` 5 ¨

5

15
“ 55{15 « 3.667

And compute ErXs as follows:

ErX2s “ 12 ¨
1

15
` 22 ¨

2

15
` 32 ¨

3

15
` 42 ¨

4

15
` 52 ¨

5

15
“ 225{15 “ 15

And the variance of X:

Var pXq “ ErX2s ´ E2rXs “ 15 ´ p55{15q2 “
153 ´ 552

15
“

350

225
“

14

9
« 1.556

b) Let X be any random variable with mean ErXs “ µ and variance Var pXq “ σ2. Find the mean and

variance of Z “
X ´ µ

σ
. (When you’re done, you’ll see why we call this a “standardized” version of X!)

We know that EraXs “ a ¨ ErXs for some constant a, and that ErX ` bs “ ErXs ` b for some
constant b. As such, we can compute the expectation of the standardized version of X, knowing
that ErXs “ µ:

ErZs “ E
„

X ´ µ

σ

ȷ

“
1

σ
pErX ´ µsq “

1

σ
pErXs ´ µq “ 0

For the variance, we know that Var paX ` bq “ a2Var pXq. With that in mind, knowing that
Var pXq “ σ2, we can write:

Var pZq “ Var

ˆ

X ´ µ

σ

˙

“
1

σ2
Var pXq “ 1
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c) Let X,Y be independent random variables. Find the mean and variance of X ´ 3Y ´ 5 in terms of
ErXs,ErY s,Var pXq, and Var pY q.

Using the linearity of expectation, we can write:

ErX ´ 3Y ´ 5s “ ErXs ´ 3ErY s ´ 5

We also know that the variance of a sum of independent random variables A and B is the sum
of their variances, so that Var pA ` Bq “ Var pAq ` Var pBq. In our case, we have A “ X, and
B “ ´3Y . We get:

Var pX ´ 3Y ´ 5q “ Var pXq ` Var p´3Y q “ Var pXq ` 9Var pY q

d) Let X1, . . . , Xn be independent and identically distributed (iid) random variables each with mean µ and
variance σ2. The sample mean is X̄ “ 1

n

řn
i“1 Xi. Find the mean and variance of X̄. If you use the

independence assumption anywhere, explicitly label at which step(s) it is necessary for your equalities to
be true.

Using linearity of expectation,

ErXs “ E

«

1

n

n
ÿ

i“1

Xi

ff

“
1

n

n
ÿ

i“1

ErXis “
1

n
nµ “ µ .

Note that independence was not necessary to calculate the above. As for variance,

Var
`

X
˘

“ Var

˜

1

n

n
ÿ

i“1

Xi

¸

“
1

n2

n
ÿ

i“1

Var pXiq “
1

n2
nσ2 “

σ2

n

where independence of the Xis is necessary for the second equality.
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Task 6 – Symmetric Difference

For two sets A and B, define the symmetric difference ∆ to be the set

A∆B “ pA X BCq Y pB X ACq “ pA Y Bq X pAC Y BCq ,

i.e., the set containing elements that are in exactly one of A and B. For example, if A “ t1, 2, 3u and B “ t2, 3, 4u,
then A∆B “ t1, 4u, since 1 is in A and not in B, and 4 is in B and not in A. 2, 3 are in A and B, so they are
not included in the symmetric difference.

Suppose A and B are random, independent (possibly empty) subsets of t1, 2, . . . , nu, where each subset is equally
likely to be chosen as A or B. Let X be the random variable that is the size of A∆B (in the example above, X
would be 2). What is ErXs?

For i “ 1, 2, . . . , n, let Xi be the indicator of whether i P A∆B. We may then say that X “
řn

i“1 Xi.
Note that if i P A∆B, then i is either in A or i is in B. To that end, let Yi and Zi be the indicator
variables of whether i P A and i P B, respectively. Then

P pYi “ 1q “
2n´1

2n
“

1

2
,

where the numerator fixes i to be in A then constructs a subset from the remaining n ´ 1 numbers,
and the denominator is the number of subsets of rns. A similar argument can be shown for P pZi “ 1q.
Thus

ErXis “ P pXi “ 1q “ P pYi “ 0, Zi “ 1q ` P pYi “ 1, Zi “ 0q

“ P pYi “ 0qP pZi “ 1q ` P pYi “ 1qP pZi “ 0q

“
1

2
¨
1

2
`

1

2
¨
1

2
“

1

2
,

where we have used the fact that Yi, Zi are independent. By Linearity of Expectation,

ErXs “ E

«

n
ÿ

i“1

Xi

ff

“

n
ÿ

i“1

E rXis “ n ¨
1

2
“

n

2
.

Task 7 – Hat Check

At a reception, n people give their hats to a hat-check person. When they leave, the hat-check person gives each
of them a hat chosen at random from the hats that remain. What is the expected number of people who get
their own hats back? (Notice that the hats returned to two people are not independent events: if a certain hat
is returned to one person, it cannot also be returned to the other person.)

Let X be the number of people who get their hats back. For i P rns, let Xi be 1 if person i gets

their hat back, and 0 otherwise. Then, ErXis “ PpXi “ 1q “
|E|

|Ω|
. The sample space is all possible

distributions of hats among the n people, and the event of interest E is the subset of the sample
space where person i has their own hat. There are n! ways to distribute the n hats among the n
people. This is because the first person might have gotten 1 out of n possible hats; for each hat the
first person got, the second person could get n ´ 1 possible hats; and so on. The number of ways
person i can get their hat back is pn ´ 1q!. This is because we are essentially removing person i and
hat i from the pool of people/hats, and counting the permutations of the n ´ 1 remaining people.

Thus, PpXi “ 1q “
pn´1q!

n! “ 1
n . Since X “

řn
i“1 Xi, Linearity of Expectation tell us that

ErXs “ E

«

n
ÿ

i“1

Xi

ff

“

n
ÿ

i“1

ErXis “

n
ÿ

i“1

1

n
“ n ¨

1

n
“ 1 .
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Task 8 – Balls in Bins

Let X be the number of bins that remain empty when m balls are distributed into n bins randomly and indepen-
dently. For each ball, each bin has an equal probability of being chosen. (Notice that two bins being empty are
not independent events: if one bin is empty, that decreases the probability that the second bin will also be empty.
This is particularly obvious when n “ 2 and m ą 0.) Find ErXs.

For i P rns, let Xi be 1 if bin i is empty, and 0 otherwise. Then, X “
řn

i“1 Xi. We first compute
ErXis “ 1 ¨ PpXi “ 1q ` 0 ¨ PpXi “ 0q “ PpXi “ 1q “ pn´1

n qm. Indeed, we are assuming multiple
balls can go in the same bin. As such, when computing PpXi “ 1q, given that bin i is empty, we
remove it from the pool of possible bins to pick from, leaving us with n ´ 1 bins out of a total of n
bins in which we can place balls. Since we are distributing m balls over the n bins, the event that bin
i remains empty occurs with probability

`

n´1
n

˘m
. Hence, by linearity of expectation:

ErXs “ E

«

n
ÿ

i“1

Xi

ff

“

n
ÿ

i“1

E rXis “ n ¨

ˆ

n ´ 1

n

˙m

Task 9 – Frogger

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a unit step right
with probability p1, to the left with probability p2, and doesn’t move with probability p3, where p1 ` p2 ` p3 “ 1.
After 2 seconds, let X be the location of the frog.

a) Find pXpkq, the probability mass function for X.

Let L be a left step, R be a right step, and N be no step.

The range of X is t´2,´1, 0, 1, 2u. We can compute pXp´2q “ PpX “ ´2q “ PpLLq “ p22,
pXp´1q “ PpX “ ´1q “ PpLN Y NLq “ 2p2p3, and pXp0q “ PpX “ 0q “ PpNN Y LR Y

RLq “ p23 ` 2p1p2. Similarly for pXp1q and pXp2q.

pXpkq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p22 k “ ´2

2p2p3 k “ ´1

p23 ` 2p1p2 k “ 0

2p1p3 k “ 1

p21 k “ 2

0 otherwise

b) Compute E rXs from the definition.

E rXs “ p´2qpp22q ` p´1qp2p2p3q ` p0qpp23 ` 2p1p2q ` p1qp2p1p3q ` p2qpp21q “ 2pp1 ´ p2q

c) Compute E rXs again, but using linearity of expectation.

Let Y be the amount you moved on the first step (either ´1, 0, 1), and Z the amount you moved
on the second step. Then, E rY s “ E rZs “ p1qpp1q ` p0qpp3q ` p´1qpp2q “ p1 ´ p2.

Then X “ Y ` Z and E rXs “ E rY ` Zs “ E rY s ` E rZs “ 2pp1 ´ p2q
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Task 10 – Expectations, Independence, and Variance

a) Let U be a random variable which is uniform over the set rns “ t1, 2, . . . , nu, i.e, P pU “ iq “ 1
n for all

i P rns. Compute E
“

U2
‰

and Var pUq.

Hint:
řn

i“1 i “
npn`1q

2 and
řn

i“1 i
2 “

npn`1qp2n`1q

6 .

We first calculate ErU s directly from the definition of expectation:

ErU s “

n
ÿ

k“1

k ¨ pU pkq “

n
ÿ

k“1

k ¨
1

n
“

1

n

n
ÿ

k“1

k “
1

n
¨
npn ` 1q

2
.

We may calculate ErU2s, citing the Law of the Unconscious Statistician (LOTUS) with gpXq “

X2:

ErU2s “

n
ÿ

k“1

gpkq¨pU pkq “

n
ÿ

k“1

k2¨pU pkq “
1

n

n
ÿ

k“1

k2 “
1

n
¨
npn ` 1qp2n ` 1q

6
“

pn ` 1qp2n ` 1q

6
.

Therefore

Var pUq “ E
“

U2
‰

´ E rU s
2

“
pn ` 1qp2n ` 1q

6
´

pn ` 1q2

4

“
n ` 1

12
¨ p4n ` 2 ´ 3n ´ 3q “

pn ` 1qpn ´ 1q

12
.

b) Let Y1 and Y2 be the independent outcomes of two fair 6-sided dice rolls, and let Z “ Y1 ` Y2. Then,
compute E

“

Z2
‰

and Var pZq.

Hint: Try to use an indirect solution using linearity and independence, without the need of explicitly giving
the distribution of Z2.

First,

E
“

Z2
‰

“ ErpY1 ` Y2q2s “ ErY 2
1 ` 2Y1Y2 ` Y 2

2 s

“ E
“

Y 2
1

‰

` E
“

Y 2
2

‰

` 2E rY1 ¨ Y2s linearity of expectation

“ E
“

Y 2
1

‰

` E
“

Y 2
2

‰

` 2ErY1sErY2s . independence

We know that E rY1s “ E rY2s “ 21{6. We also know that E
“

Y 2
1

‰

“ E
“

Y 2
2

‰

“ 91{6 (from
class). Thus,

E
“

Z2
‰

“ 91{3 ` 2 ¨ 212{36 “ 91{3 ` 147{6 “ 329{6 .

On the other hand, we know that E rZs “ 7. Therefore,

Var pZq “ E
“

Z2
‰

´ E rZs
2

“ 329{6 ´ 294{6 “ 35{6 .

We could also have used Var pZq “ Var pY1 ` Y2q “ Var pY1q ` Var pY2q “ 35{12 ¨ 2 “ 35{6,
using the calculation from class for the individual variances.

Task 11 – Pond fishing
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Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where B ` R ` G “ N . For each
of the following scenarios, identify the most appropriate distribution (with parameter(s)):

a) how many of the next 10 fish I catch are blue, if I catch and release

Since this is the same as saying how many of my next 10 trials (fish) are a success (are blue),
this is a binomial distribution. Specifically, since we are doing catch and release, the probability
of a given fish being blue is B

N and each trial is independent. Thus:

Bin

ˆ

10,
B

N

˙

b) how many fish I had to catch until my first green fish, if I catch and release

Once again, each catch is independent, so this is asking how many trials until we see a success,
hence it is a geometric distribution:

Geo

ˆ

G

N

˙

c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute

This is asking for the number of occurrences of event given an average rate, which is the definition
of the Poisson distribution. Since we’re looking for events in the next 5 minutes, that is our time
unit, so we have to adjust the average rate to match (r per minute becomes 5r per 5 minutes).

Poip5rq

d) whether or not my next fish is blue

This is the same as the binomial case, but it’s only one trial, so it is necessarily Bernoulli.

Ber

ˆ

B

N

˙

e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch

We have not covered the Hypergeometric RV in class, but its definition is the number of successes
in n draws (without replacement) from N items that contain K successes in total. In this case,
we have 10 draws (without replacement because we do not catch and release), and out of the N
fish, B are blue (a success).

HypGeopN,B, 10q

f) how many fish I have to catch until I catch three red fish, if I catch and release

Negative binomial is another RV we didn’t cover in class. It models the number of trials with
probability of success p, until you get r successes. In this case, as before, our trials are caught fish
(with replacement this time) and our success is if the fish are red, which happens with probability
R
N .

NegBin

ˆ

3,
R

N

˙
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