Linearity of Expectation CSE 312 24Su
 Lecture 9

Outline

Last time, we introduced random variables (RVs) function that assign a quantitative value to an outcome of a random experiment

- Describe RVs with things like the support, PMF, CDF
- Expected value of a RV is like the "average" value it takes on

Today...

> Independence of random variables
$>$ Expectation of a function of a random variable (e.g., $E\left[X^{2}\right]$)
> Linearity of expectation
Statement
Proof
A whole bunch of examples

Independence of Random Variables

Independence of events

Recall the definition of independence of events:

Independence

Two events A, B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)
$$

"knowing whether one event occurred doesn't tell us anything about whether the other event occurred"

Independence of Random Variables

That's for events...what about random variables?

Independence (of random variables)

$$
\begin{aligned}
& X \text { and } Y \text { are independent if for all } k, \ell \\
& \mathbb{P}(X=k, Y=\ell)=\mathbb{P}(X=k) \mathbb{P}(Y=\ell)
\end{aligned}
$$

We'll often use commas instead of \cap symbol to save space.
"knowing the value of one random variable doesn't tell us anything about what the value of the other might be"

Independence of Random Variables

The "for all values" is important.

We say that the event "the sum is 7 " is independent of "the red die is 5 " What about $S=$ "the sum of two dice" and $R=$ "the value of the red die"

Independence of Random Variables

The "for all values" is important.

We say that the event "the sum is 7" is independent of "the red die is 5 " What about $S=$ "the sum of two dice" and $R=$ "the value of the red die"

NOT independent.
$\mathbb{P}(S=2, R=5) \neq \mathbb{P}(S=2) \mathbb{P}(R=5)$ (for example)

Independence of Random Variables

Flip a coin independently $2 n$ times.
Let X be "the number of heads in the first n flips."
Let Y be "the number of heads in the last n flips."
X and Y are independent.

Mutual Independence for RVs

A little simpler to write down than for events

Mutual Independence (of random variables)

$$
\begin{gathered}
X_{1}, X_{2}, \ldots, X_{n} \text { are mutually independent if for all } x_{1}, x_{2}, \ldots, x_{n} \\
\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}\right) \mathbb{P}\left(X_{2}=x_{2}\right) \cdots \mathbb{P}\left(X_{n}=x_{n}\right)
\end{gathered}
$$

DON'T need to check all subsets for random variables...
But you do need to check all values (all possible x_{i}) still.

Expectation of a Function of a Random Variable

Expectation

Expectation

The "expectation" (or "expected value") of a random variable X is:

$$
\begin{aligned}
& \mathbb{E}[\boldsymbol{X}]=\sum_{k \in \Omega_{X}} \boldsymbol{k} \cdot \mathbb{P}(\boldsymbol{X}=\boldsymbol{k}) \\
& \mathbb{E}[\boldsymbol{X}]=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)
\end{aligned}
$$

Intuition: The weighted average of values X could take on. Weighted by the probability you actually see them.

What about $\mathbb{E}[g(X)]$? (e.g., $\left.\mathbb{E}\left[X^{2}\right], \mathbb{E}\left[2^{X}\right]\right)$

Applying functions on a random variable(s).
$g(X)=2 X+3$
$g(X)=X^{2}$
$g(X)=2^{X}$
$g(X, Y)=X+Y$

Still gives us a random variable!
Given an outcome, these functions give you a number.
They're functions from $\Omega \rightarrow \mathbb{R}$. That's the definition of a random variable!

What about $\mathbb{E}[g(X)]$? (e.g., $\left.\mathbb{E}\left[X^{2}\right], \mathbb{E}\left[2^{X}\right]\right)$

What if we want to find the expected value of some function of X ?

Let's say we want to find $\mathbb{E}\left[X^{2}\right]$. Is $\mathbb{E}\left[X^{2}\right]=(\mathbb{E}[X])^{2}$?
Not necessarily! For example,
If we have a random variable X that following the PMF:
$\mathrm{p}_{X}(k)=\left\{\begin{array}{lr}0.5 & k=1 \\ 0.5 & k=-1 \\ 0 & \text { otherwise }\end{array}\right.$
$\mathbb{E}[X]=0.5 \cdot 1+0.5 \cdot-1=0 \rightarrow(\mathbb{E}[X])^{2}=0$
$\mathbb{E}\left[X^{2}\right]=1$

What about $\mathbb{E}[g(X)]$? (e.g., $\left.\mathbb{E}\left[X^{2}\right]\right)$

What if we want to find the expected value of some function of X ?

Let's say we want to find $\mathbb{E}\left[X^{2}\right]$. Is $\mathbb{E}\left[X^{2}\right]=(\mathbb{E}[X])^{2}$?
Not necessarily! For example,
If we have a random variable X that follows the PMF:
$\mathrm{p}_{X}(k)=\left\{\begin{array}{lr}0.5 & k=1 \\ 0.5 & k=-1 \\ 0 & \text { otherwise }\end{array} \quad \mathrm{p}_{X^{2}}(k)=\mathbb{P}\left(X^{2}=k\right)=\left\{\begin{array}{lr}0.5 & k=1^{2} \\ 0.5 & k=(-1)^{2} \\ 0 & \text { otherwise }\end{array}\right.\right.$
$\mathbb{E}[X]=0.5 \cdot 1+0.5 \cdot-1=0$

$$
\mathbb{E}\left[X^{2}\right]=0.5 \cdot 1^{2}+0.5 \cdot(-1)^{2}=1
$$

What about $\mathbb{E}[g(X)]$? (e.g., $\left.\mathbb{E}\left[X^{2}\right]\right)$

What if we want to find the expected value of some function of X ?

Let's say we want to find $\mathbb{E}\left[X^{2}\right]$. Is $\mathbb{E}\left[X^{2}\right]=(\mathbb{E}[X])^{2}$?
Not necessarily! For example,
If we have a random variable X that follows the PMF:
$\mathrm{p}_{X}(k)=\left\{\begin{array}{lr}0.5 & k=1 \\ 0.5 & k=-1 \\ 0 & \text { otherwise }\end{array}\right.$

$$
\mathrm{p}_{X^{2}}(k)=\mathbb{P}\left(X^{2}=k\right)=\left\{\begin{array}{lr}
1 & k=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$\mathbb{E}[X]=0.5 \cdot 1+0.5 \cdot-1=0$

$$
\mathbb{E}\left[X^{2}\right]=0.5 \cdot 1^{2}+0.5 \cdot(-1)^{2}=1
$$

Expectation of $g(X)$

"Law of the unconscious statistician" (LOTUS)

The "expectation" (or "expected value") of $\mathrm{g}(X)$ is:

$$
\mathbb{E}[g(X)]=\sum_{k \in \Omega_{X}} g(k) \cdot \mathbb{P}(X=k)
$$

Exact same as formula for $E[X]$, but we apply the function on each of the values in the support of \boldsymbol{X} (the corresponding probabilities are the same)

Expectation of $g(X)$

"Law of the unconscious statistician" (LOTUS)

The "expectation" (or "expected value") of $\mathrm{g}(X)$ is:

$$
\mathbb{E}[g(X)]=\sum_{k \in \Omega_{X}} g(k) \cdot \mathbb{P}(X=k)
$$

Exact same as formula for $E[X]$, but we apply the function on each of the values in the support of \boldsymbol{X} (the corresponding probabilities are the same)

What if $\boldsymbol{g}(\boldsymbol{X})$ is a linear function? E.g., $\boldsymbol{g}(\boldsymbol{X}, \boldsymbol{Y})=\boldsymbol{X}+\boldsymbol{Y}$

Linearity of Expectation

Linearity of Expectation

Linearity of Expectation

For any two random variables X and Y :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: X and Y do not have to be independent

Linearity of Expectation

Linearity of Expectation

For any two random variables X and Y :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: X and Y do not have to be independent
Extending this to n random variables, $X_{1}, X_{2}, \ldots, X_{n}$

$$
\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

This can be proven by induction.

Linearity of Expectation - Proof

Linearity of Expectation

For any two random variables X and Y :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: X and Y do not have to be independent

$$
\begin{aligned}
& \text { Proof: } \\
& \mathbb{E}[X+Y]=\Sigma_{\omega \in \Omega} \mathbb{P}(\omega)(X(\omega)+Y(\omega))
\end{aligned}
$$

Definition of expectation:

$$
\mathbb{E}[\boldsymbol{X}]=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)
$$

Linearity of Expectation - Proof

Linearity of Expectation

For any two random variables X and Y :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: X and Y do not have to be independent

$$
\begin{aligned}
& \text { Proof: } \\
& \begin{aligned}
\mathbb{E}[X+Y] & =\Sigma_{\omega \in \Omega} \mathbb{P}(\omega)(X(\omega)+Y(\omega)) \\
& =\Sigma_{\omega \in \Omega}(\mathbb{P}(\omega) X(\omega)+\mathbb{P}(\omega) Y(\omega))
\end{aligned}
\end{aligned}
$$

Definition of expectation:

$$
\mathbb{E}[\boldsymbol{X}]=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)
$$

Linearity of Expectation - Proof

Linearity of Expectation

For any two random variables X and Y :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: X and Y do not have to be independent

$$
\begin{aligned}
& \text { Proof: } \\
& \begin{aligned}
\mathbb{E}[X+Y] & =\sum_{\omega \in \Omega} \mathbb{P}(\omega)(X(\omega)+Y(\omega)) \\
& =\sum_{\omega \in \Omega}(\mathbb{P}(\omega) X(\omega)+\mathbb{P}(\omega) Y(\omega)) \\
& =\sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega)+\sum_{\omega \in \Omega} \mathbb{P}(\omega) Y(\omega)
\end{aligned}
\end{aligned}
$$

Definition of expectation:

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)
$$

Linearity of Expectation - Proof

Linearity of Expectation

For any two random variables X and Y :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: X and Y do not have to be independent

$$
\begin{aligned}
& \text { Proof: } \\
& \begin{aligned}
\mathbb{E}[X+Y] & =\sum_{\omega \in \Omega} \mathbb{P}(\omega)(X(\omega)+Y(\omega)) \\
& =\sum_{\omega \in \Omega}(\mathbb{P}(\omega) X(\omega)+\mathbb{P}(\omega) Y(\omega)) \\
& =\sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega)+\Sigma_{\omega \in \Omega} \mathbb{P}(\omega) Y(\omega) \\
& =\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
\end{aligned}
$$

Definition of expectation:

$$
\mathbb{E}[\boldsymbol{X}]=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)
$$

Linearity of Expectation

Linearity of Expectation

For any two random variables X and Y :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: X and Y do not have to be independent
Constants are also fine:
For real numbers a, b, c

$$
\begin{aligned}
\mathbb{E}[a X+b Y+c] & =\mathbb{E}[a X]+\mathbb{E}[b Y+c] \\
& =a \mathbb{E}[X]+b \mathbb{E}[Y]+c
\end{aligned}
$$

Fishy Business

Say you and your friend go fishing everyday.

- You catch X fish, with $\mathbb{E}[X]=3$
- Your friend catches Y fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?

Fishy Business

Say you and your friend go fishing everyday.

- You catch X fish, with $\mathbb{E}[X]=3$
- Your friend catches Y fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?

Let Z be the r.v. representing the total number of fish you both catch

Fishy Business

Say you and your friend go fishing everyday.

- You catch X fish, with $\mathbb{E}[X]=3$
- Your friend catches Y fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?

Let Z be the r.v. representing the total number of fish you both catch

$$
\mathbb{E}[Z]=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=3+7=10
$$

Fishy Business

Say you and your friend go fishing everyday.

- You catch X fish, with $\mathbb{E}[X]=3$
- Your friend catches Y fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?

Let Z be the r.v. representing the total number of fish you both catch

$$
\mathbb{E}[Z]=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=3+7=10
$$

- You can sell each for $\$ 10$ per fish, but you need $\$ 15$ (total) for expenses. What is your average profit?

Fishy Business

Say you and your friend go fishing everyday.

- You catch X fish, with $\mathbb{E}[X]=3$
- Your friend catches Y fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?

Let Z be the r.v. representing the total number of fish you both catch

$$
\mathbb{E}[Z]=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=3+7=10
$$

- You can sell each for $\$ 10$ per fish, but you need $\$ 15$ (total) for expenses. What is your average profit?

$$
\mathbb{E}[10 Z-15]=10 \mathbb{E}[Z]-15=100-15=85
$$

Coin Tosses

If we flip a coin twice, what is the expected number of heads that come up?

Coin Tosses

If we flip a coin twice, what is the expected number of heads that come up?

Let Y be the r.v. representing the total number of heads

$$
p_{Y}(y)=\left\{\begin{array}{lc}
\frac{1}{4} & \text { if } y=0 \\
\frac{1}{2} & \text { if } y=1 \\
\frac{1}{4} & \text { if } y=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Coin Tosses

If we flip a coin twice, what is the expected number of heads that come up?

Let Y be the r.v. representing the total number of heads

$$
p_{Y}(y)=\left\{\begin{array}{lc}
\frac{1}{4} & \text { if } y=0 \\
\frac{1}{2} & \text { if } y=1 \\
\frac{1}{4} & \text { if } y=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\mathbb{E}[Y]=\Sigma_{k \in \Omega_{Y}} p_{Y}(k) \cdot k=\frac{1}{4} \cdot 0+\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2=1
$$

Repeated Coin Tosses

Now what if the probability of flipping a head was p and that we wanted to find the total number of heads flipped when we flip the coin n times?

Let X be the r.v. representing the total number of heads.

Repeated Coin Tosses

Now what if the probability of flipping a head was p and that we wanted to find the total number of heads flipped when we flip the coin n times?

Let X be the r.v. representing the total number of heads.

Make a prediction --- what should $\mathbb{E}[X]$ be?
a) $n+p$
b) p^{n}
c) $n p$
d) n / p

Fill out the poll everywhere: pollev.com/cse312

Repeated Coin Tosses

Now what if the probability of flipping a head was p and that we wanted to find the total number of heads flipped when we flip the coin n times?

Let X be the r.v. representing the total number of heads.

$$
\mathbb{E}[X]=\sum_{k=0}^{n} k \cdot \mathbb{P}(X=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Repeated Coin Tosses

Now what if the probability of flipping a head was p and that we wanted to find the total number of heads flipped when we flip the coin n times?

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k=0}^{n} k \cdot \mathbb{P}(Y=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} n \cdot\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \\
& \left.=n p \sum_{i=0}^{n-1}\binom{n-1}{i} p^{i}(1-p)^{n-1-i} \begin{array}{l}
k \\
k
\end{array}\right)=n\binom{n-1}{k-1} \\
& =n p(p+(1-p))^{n-1}=n p
\end{aligned}
$$

Binomial Theorem!
We did it! And all it took was a clever application of the binomial theorem,
setup by a very non-obvious application of an obscure combinatorial identity. Ezpz.

Repeated Coin Tosses

Now what if the probability of flipping a head was p and that we wanted to find the total number of heads flipped when we flip the coin n times?

$$
\mathbb{E}[X]=\sum_{n=0}^{n} \frac{k}{n} \cdot \mathbb{P}(Y=k)=\Gamma_{n}^{n} \text { this every time! }
$$

$$
\begin{aligned}
& =\sum_{k=0}^{n} \cdot \mathbb{P}(Y=k)=\Gamma^{n} \text { this every } \\
& =\sum_{n}^{n}
\end{aligned}
$$

We did it! And all it took was a clever application of the binomial theorem, setup by a very non-obvious application of an obscure combinatorial identity. Ezpz.

Linearity of Expectation

Linearity of Expectation

For any two random variables X and Y :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: X and Y do not have to be independent
Extending this to n random variables, $X_{1}, X_{2}, \ldots, X_{n}$

$$
\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

This can be proven by induction.

Indicator Random Variables

For any event A, we can define the indicator random variable $\mathbf{1}[A]$ for A

$$
\mathbf{1}[A]=X=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

if event A occurs otherwise $\quad \mathbb{P}(X=0)=1-\mathbb{P}(A)$

You'll also see notation like:
$\mathbb{1}[A], 1_{A}, \mathbb{1}[$ some boolean]

$$
p_{X}(k)=\left\{\begin{array}{lr}
\mathbb{P}(A) & \text { if } k=1 \\
1-\mathbb{P}(A) \text { if } k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbb{E}[X] \\
& =1 \cdot p_{X}(1)+0 \cdot p_{X}(0) \\
& =p_{X}(1)=\mathbb{P}(A)
\end{aligned}
$$

Repeated Coin Tosses (Again)

The probability of flipping a head is p and we want to find the total number of heads flipped when we flip the coin n times?
Let X be the total number of heads
What indicators can we define? What 'Booleans' have enough information to combine (add) and solve the problem?

Repeated Coin Tosses (Again)

The probability of flipping a head is p and we want to find the total number of heads flipped when we flip the coin n times?

Let X be the total number of heads
Define X_{i} as follows:

$$
X_{i}=\left\{\begin{array}{lr}
1 & \text { if the ith coin flip is heads } \\
0 & \text { otherwise }
\end{array}\right.
$$

Repeated Coin Tosses (Again)

The probability of flipping a head is p and we want to find the total number of heads flipped when we flip the coin n times?

Let X be the total number of heads
Define X_{i} as follows:

$$
X_{i}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

if the ith coin flip is heads
otherwise

Repeated Coin Tosses (Again)

The probability of flipping a head is p and we want to find the total number of heads flipped when we flip the coin n times?
Let X be the total number of heads Define X_{i} as follows:

$$
\begin{gathered}
\mathbb{P}\left(X_{i}=1\right)=p \\
\mathbb{P}\left(X_{i}=0\right)=1-p
\end{gathered}
$$

$$
X_{i}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

if the ith coin flip is heads otherwise

Repeated Coin Tosses (Again)

The probability of flipping a head is p and we want to find the total number of heads flipped when we flip the coin n times?
Let X be the total number of heads Define X_{i} as follows:

$$
\begin{gathered}
\mathbb{P}\left(X_{i}=1\right)=p \\
\mathbb{P}\left(X_{i}=0\right)=1-p
\end{gathered}
$$

$$
X_{i}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

if the ith coin flip is heads

$$
\mathbb{E}\left[X_{i}\right]=1 \cdot p+0 \cdot(1-p)=p
$$

Repeated Coin Tosses (Again)

The probability of flipping a head is p and we want to find the total number of heads flipped when we flip the coin n times?
Let X be the total number of heads Define X_{i} as follows:

$$
\begin{gathered}
\mathbb{P}\left(X_{i}=1\right)=p \\
\mathbb{P}\left(X_{i}=0\right)=1-p
\end{gathered}
$$

if the ith coin flip is heads

$$
X=\sum_{i=1}^{n} X_{i}
$$

$$
\mathbb{E}\left[X_{i}\right]=1 \cdot p+0 \cdot(1-p)=p
$$

By Linearity of Expectation,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Repeated Coin Tosses (Again)

The probability of flipping a head is p and we want to find the total number of heads flipped when we flip the coin n times?
Let X be the total number of heads Define X_{i} as follows:

$$
\begin{gathered}
\mathbb{P}\left(X_{i}=1\right)=p \\
\mathbb{P}\left(X_{i}=0\right)=1-p
\end{gathered}
$$

if the ith coin flip is heads

$$
X=\sum_{i=1}^{n} X_{i}
$$

$$
\mathbb{E}\left[X_{i}\right]=1 \cdot p+0 \cdot(1-p)=p
$$

By Linearity of Expectation,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} p=n p
$$

Computing complicated expectations

We often use these three steps to solve complicated expectations

1. Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

2. LOE: Apply Linearity of Expectation

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

3. Conquer: Compute the expectation of each X_{i}

Often X_{i} are indicator random variables

Pairs with the same birthday

In a class of m students, on average how many pairs of people have the same birthday?
Decompose: Let X be the number of pairs with the same birthday

LOE:

Conquer:

Pairs with the same birthday

In a class of m students, on average how many pairs of people have the same birthday?
Decompose: Let X be the number of pairs with the same birthday Define $X_{i j}$ as follows:

$$
X_{i j}=\left\{\begin{array}{lr}
1 & \text { if person } \mathrm{i}, \mathrm{j} \text { have the same bithday } \\
0 & \text { otherwise }
\end{array} \quad X=\Sigma_{i, j} X_{i j}\right.
$$

LOE:

Conquer:

Pairs with the same birthday

In a class of m students, on average how many pairs of people have the same birthday?
Decompose: Let X be the number of pairs with the same birthday Define $X_{i j}$ as follows:

$$
X_{i j}=\left\{\begin{array}{lr}
1 & \text { if person } \mathrm{i}, \mathrm{j} \text { have the same bithday } \\
0 & \text { otherwise }
\end{array} \quad X=\Sigma_{i, j} X_{i j}\right.
$$

LOE:

$$
\mathbb{E}[X]=\mathbb{E}\left[\Sigma_{i, j} X_{i j}\right]=\Sigma_{i, j} \mathbb{E}\left[X_{i j}\right]
$$

Conquer:

Pairs with the same birthday

In a class of m students, on average how many pairs of people have the same birthday?
Decompose: Let X be the number of pairs with the same birthday
Define $X_{i j}$ as follows:
$X_{i j}=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
if person i, j have the same bithday otherwise

$$
X=\Sigma_{i, j} X_{i j}
$$

LOE:

$$
\mathbb{E}[X]=\mathbb{E}\left[\Sigma_{i, j} X_{i j}\right]=\Sigma_{i, j} \mathbb{E}\left[X_{i j}\right]
$$

Conquer:

$$
\begin{gathered}
\mathbb{E}\left[X_{i j}\right]=\mathbb{P}\left(X_{i j}=1\right)=\frac{365}{365 \cdot 365}=\frac{1}{365} \\
\mathbb{E}[X]=\binom{m}{2} \cdot \mathbb{E}\left[X_{i j}\right]=\binom{m}{2} \cdot \frac{1}{365}
\end{gathered}
$$

Rotating the table

n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.
Rotate the table by a random number k of positions between 1 and $n-1$ (equally likely)
Let X be the number of people that end up in front of their own name tag. Find $\mathbb{E}[X]$.

Decompose:

What X_{i} can we define that have the needed information?
LOE:
Conquer:

Rotating the table

n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.
Rotate the table by a random number k of positions between 1 and $n-1$ (equally likely)
X is the number of people that end up in front of their own name tag. Find $\mathbb{E}[X]$.
Decompose: Define X_{i} as follows:
$X_{i}=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
if person i sits infront of their own name tag otherwise

Note: $X=\sum_{i=1}^{n} X_{i}$
LOE:

$$
\mathbb{E}[X]=\mathbb{E}\left[\Sigma_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Conquer:

Rotating the table

n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number k of positions between 1 and $n-1$ (equally likely)
X is the number of people that end up in front of their own name tag. Find $\mathbb{E}[X]$.
Decompose: Define X_{i} as follows:
$X_{i}=\left\{\begin{array}{rr}1 & \text { if person i sits infront of their own name tag } \\ 0 & \text { otherwise }\end{array} \quad X=\Sigma_{i=1}^{n} X_{i}\right.$

LOE:

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Conquer:

$$
\mathbb{E}\left[X_{i}\right]=P\left(X_{i}=1\right)=\frac{1}{n-1}
$$

$$
\mathbb{E}[X]=n \cdot \mathbb{E}\left[X_{i}\right]=\frac{n}{n-1}
$$

Extra Practice

Frogger

A frog starts on a 1 -dimensional number line at 0 .
Each second, independently, the frog takes a unit step right with probability p_{1}, to the left with probability p_{2}, and doesn't move with probability p_{3}, where $p_{1}+p_{2}+p_{3}=1$.
After 2 seconds, let X be the location of the frog. Find $\mathbb{E}[X]$.

Frogger - Brute Force

A frog starts on a 1-dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability p_{R}, to the left with probability p_{L}, and doesn't move with probability p_{S}, where $p_{L}+p_{R}+p_{S}=1$. After 2 seconds, let X be the location of the frog. Find $\mathbb{E}[X]$.

We could find the PMF by computing the probability for each value in the range of X, and then applying definition of expectation:

$$
p_{X}(x)=\left\{\begin{array}{l}
p_{L}^{2} \\
2 p_{L} p_{S} \\
2 p_{L} p_{R}+p_{S}^{2} \\
2 p_{R} p_{S} \\
p_{R}^{2} \\
0
\end{array}\right.
$$

$$
\begin{aligned}
x & =-2 \\
x & =-1 \\
x & =0 \\
x & =1 \\
x & =2
\end{aligned}
$$

We think about the outcomes that correspond to each value of X and compute the probability of that. For example, $X=0$ happens when the frog doesn't move this means it either moved left and then right, or right and then left, or did not move both seconds.
$\mathbb{E}[\boldsymbol{X}]=\Sigma_{\omega} P(\omega) X(\omega)=(-2) p_{L}^{2}+(-1) 2 p_{L} p_{S}+0 \cdot\left(2 p_{L} p_{R}+p_{S}^{2}\right)+(1) 2 p_{R} p_{S}+(2) p_{R}^{2}=2\left(p_{R}-p_{L}\right)$

Frogger - LOE

Or we can apply LoE!
A frog starts on a 1-dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability p_{R}, to the left with probability p_{L}, and doesn't move with probability p_{S}, where $p_{L}+p_{R}+p_{S}=1$. After 2 seconds, let X be the location of the frog. Find $\mathbb{E}[X]$.

Define X_{i} as follows:
$X_{i}=\left\{\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right.$
if the frog moved left on the i th step
otherwise
if the frog moved right on the i th step

$$
\mathbb{E}\left[X_{i}\right]=-1 \cdot p_{L}+1 \cdot p_{R}+0 \cdot p_{S}=\left(p_{R}-p_{L}\right)
$$

By Linearity of Expectation,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{2} X_{i}\right]=\sum_{i=1}^{2} \mathbb{E}\left[X_{i}\right]=2\left(p_{R}-p_{L}\right)
$$

Frogger - LOE

If we interested in a whole minute (60 sec), the first approach would be awful because we would need to compute many probabilities or deal with a gnarly summation! Instead, we can use LoE!
A frog starts on a 1-dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability p_{R}, to the left with probability p_{L}, and doesn't move with probability p_{S}, where $p_{L}+p_{R}+p_{S}=1$. After 60 seconds, let X be the location of the frog. Find $\mathbb{E}[X]$.

Define X_{i} as follows:

$$
X_{i}=\left\{\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right.
$$

if the frog moved left on the i th step
otherwise
if the frog moved right on the i th step

$$
\mathbb{E}\left[X_{i}\right]=-1 \cdot p_{L}+1 \cdot p_{R}+0 \cdot p_{S}=\left(p_{R}-p_{L}\right)
$$

By Linearity of Expectation,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{60} X_{i}\right]=\sum_{i=1}^{60} \mathbb{E}\left[X_{i}\right]=\mathbf{6 0}\left(p_{R}-p_{L}\right)
$$

