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Outline

Last time, we introduced random variables (RVs)
function that assign a quantitative value to an outcome of a random experiment

• Describe RVs with things like the support, PMF, CDF
• Expected value of a RV is like the “average” value it takes on

Today…

> Independence of random variables

> Expectation of a function of a random variable (e.g., 𝐸[𝑋2])

> Linearity of expectation
    Statement
    Proof
    A whole bunch of examples



Independence of Random Variables



Independence of events

Recall the definition of independence of events:

“knowing whether one event occurred doesn’t tell us anything about 
whether the other event occurred”

Two events 𝐴, 𝐵 are independent if 

ℙ 𝐴 ∩ 𝐵 = ℙ 𝐴 ⋅ ℙ(𝐵)

Independence



Independence of Random Variables

That’s for events…what about random variables?

𝑋 and 𝑌 are independent if for all 𝑘, ℓ
ℙ 𝑋 = 𝑘, 𝑌 = ℓ = ℙ 𝑋 = 𝑘 ℙ(𝑌 = ℓ)

Independence (of random variables)

We’ll often use commas instead of ∩ symbol to save space.

“knowing the value of one random variable doesn’t tell us anything 

about what the value of the other might be”



Independence of Random Variables

The “for all values” is important.

We say that the event “the sum is 7” is independent of “the red die is 5”

What about 𝑆 =“the sum of two dice” and 𝑅 =“the value of the red die”



Independence of Random Variables

The “for all values” is important.

We say that the event “the sum is 7” is independent of “the red die is 5”

What about 𝑆 =“the sum of two dice” and 𝑅 =“the value of the red die”

NOT independent. 

ℙ 𝑆 = 2, 𝑅 = 5 ≠ ℙ 𝑆 = 2 ℙ(𝑅 = 5) (for example)



Independence of Random Variables

Flip a coin independently 2𝑛 times.

Let 𝑋 be “the number of heads in the first 𝑛 flips.”

Let 𝑌 be “the number of heads in the last 𝑛 flips.”

𝑋 and 𝑌 are independent.



Mutual Independence for RVs

A little simpler to write down than for events

DON’T need to check all subsets for random variables…

But you do need to check all values (all possible 𝑥𝑖) still. 

𝑋1, 𝑋2, … , 𝑋𝑛 are mutually independent if for all 𝑥1, 𝑥2, … , 𝑥𝑛

ℙ 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛 = ℙ 𝑋1 = 𝑥1 ℙ 𝑋2 = 𝑥2 ⋯ ℙ(𝑋𝑛 = 𝑥𝑛)

Mutual Independence (of random variables)



Expectation of a Function of a Random Variable



Expectation

Intuition: The weighted average of values 𝑋 could take on.

Weighted by the probability you actually see them.

The “expectation” (or “expected value”) of a random variable 𝑋 is:

𝔼 𝑿 = ෍

𝒌∈Ω𝑋

𝒌 ⋅ ℙ(𝑿 = 𝒌)

𝔼 𝑿 = ෍

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)

Expectation



What about 𝔼[𝑔(𝑋)]? (e.g., 𝔼[𝑋2], 𝔼[2𝑋]) 

Applying functions on a random variable(s). 

𝑔 𝑋 = 2𝑋 + 3

𝑔 𝑋 = 𝑋2

𝑔 𝑋 = 2𝑋

𝑔 𝑋, 𝑌 = 𝑋 + 𝑌

Still gives us a random variable! 

Given an outcome, these functions give you a number. 

They’re functions from Ω → ℝ. That’s the definition of a random variable!



What about 𝔼[𝑔(𝑋)]? (e.g., 𝔼[𝑋2], 𝔼[2𝑋]) 

What if we want to find the expected value of some function of 𝑋?

Let’s say we want to find 𝔼[𝑋2]. Is 𝔼 𝑋2 = (𝔼 𝑋 )2 ?

Not necessarily! For example, 

If we have a random variable 𝑋 that following the PMF: 

p𝑋 𝑘 = ቐ
0.5 𝑘 = 1
0.5 𝑘 = −1
0 otherwise

𝔼 𝑋 = 0.5 ⋅ 1 + 0.5 ⋅ −1 = 0 → (𝔼 𝑋 )2 = 0

𝔼 𝑋2  = 1



What about 𝔼[𝑔(𝑋)]? (e.g., 𝔼[𝑋2]) 

What if we want to find the expected value of some function of 𝑋?

Let’s say we want to find 𝔼[𝑋2]. Is 𝔼 𝑋2 = (𝔼 𝑋 )2 ?

Not necessarily! For example, 

If we have a random variable 𝑋 that follows the PMF: 

p𝑋 𝑘 = ቐ
0.5 𝑘 = 1
0.5 𝑘 = −1
0 otherwise

 p𝑋2 𝑘 = ℙ(𝑋2 = 𝑘) = ቐ
0.5 𝑘 = 12

0.5 𝑘 = −1 2

0 otherwise

𝔼 𝑋 = 0.5 ⋅ 1 + 0.5 ⋅ −1 = 0              𝔼 𝑋2 = 0.5 ⋅ 1𝟐 + 0.5 ⋅ −1 𝟐 = 1 



What about 𝔼[𝑔(𝑋)]? (e.g., 𝔼[𝑋2]) 

What if we want to find the expected value of some function of 𝑋?

Let’s say we want to find 𝔼[𝑋2]. Is 𝔼 𝑋2 = (𝔼 𝑋 )2 ?

Not necessarily! For example, 

If we have a random variable 𝑋 that follows the PMF: 

p𝑋 𝑘 = ቐ
0.5 𝑘 = 1
0.5 𝑘 = −1
0 otherwise

 p𝑋2 𝑘 = ℙ(𝑋2 = 𝑘) = ቊ
1 𝑘 = 1
0 otherwise

𝔼 𝑋 = 0.5 ⋅ 1 + 0.5 ⋅ −1 = 0              𝔼 𝑋2 = 0.5 ⋅ 1𝟐 + 0.5 ⋅ −1 𝟐 = 1 



Expectation of 𝑔(𝑋)

Exact same as formula for 𝐸[𝑋], but we apply the function on each of the 
values in the support of 𝑿 (the corresponding probabilities are the same)

The “expectation” (or “expected value”) of g(𝑋) is:

𝔼 𝒈(𝑿) = ෍

𝒌∈Ω𝑋

𝒈(𝒌) ⋅ ℙ(𝑿 = 𝒌)

“Law of the unconscious statistician” (LOTUS)



Expectation of 𝑔(𝑋)

Exact same as formula for 𝐸[𝑋], but we apply the function on each of the 
values in the support of 𝑿 (the corresponding probabilities are the same)

The “expectation” (or “expected value”) of g(𝑋) is:

𝔼 𝒈(𝑿) = ෍

𝒌∈Ω𝑋

𝒈(𝒌) ⋅ ℙ(𝑿 = 𝒌)

“Law of the unconscious statistician” (LOTUS)

What if 𝒈(𝑿) is a linear function? E.g., 𝒈 𝑿, 𝒀 = 𝑿 + 𝒀



Linearity of Expectation



Linearity of Expectation

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation



Linearity of Expectation

Extending this to n random variables, 𝑋1, 𝑋2, … , 𝑋𝑛

𝔼 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 = 𝔼 𝑋1 + 𝔼 𝑋2 + ⋯ + 𝔼 𝑋𝑛

This can be proven by induction.

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation



Linearity of Expectation - Proof

Proof:
𝔼 𝑋 + 𝑌 = Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + 𝑌 𝜔

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation

Definition of expectation:

𝔼 𝑿 = ෍

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)



Linearity of Expectation - Proof

Proof:
𝔼 𝑋 + 𝑌 = Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + 𝑌 𝜔
 = Σ𝜔∈Ω(ℙ 𝜔 𝑋 𝜔 + ℙ 𝜔 𝑌 𝜔)

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation

Definition of expectation:

𝔼 𝑿 = ෍

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)



Linearity of Expectation - Proof

Proof:
𝔼 𝑋 + 𝑌 = Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + 𝑌 𝜔
 = Σ𝜔∈Ω(ℙ 𝜔 𝑋 𝜔 + ℙ 𝜔 𝑌 𝜔)

= Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + Σ𝜔∈Ωℙ 𝜔 𝑌 𝜔

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation

Definition of expectation:

𝔼 𝑿 = ෍

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)



Linearity of Expectation - Proof

Proof:
𝔼 𝑋 + 𝑌 = Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + 𝑌 𝜔
 = Σ𝜔∈Ω(ℙ 𝜔 𝑋 𝜔 + ℙ 𝜔 𝑌 𝜔)

= Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + Σ𝜔∈Ωℙ 𝜔 𝑌 𝜔
 = 𝔼 𝑋] + 𝔼[𝑌

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation

Definition of expectation:

𝔼 𝑿 = ෍

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)



Linearity of Expectation

Constants are also fine:

For real numbers 𝑎, 𝑏, 𝑐
𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝔼 𝑎𝑋 + 𝔼 𝑏𝑌 + 𝑐
 = 𝑎𝔼 𝑋 + 𝑏𝔼 𝑌 + 𝑐

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation



Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7

• How many fish do both of you bring on an average day?
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Let 𝑍 be the r.v. representing the total number of fish you both catch

 



Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7

• How many fish do both of you bring on an average day?

Let 𝑍 be the r.v. representing the total number of fish you both catch
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Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7
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• You can sell each for $10 per fish, but you need $15 (total) for expenses. 
What is your average profit?

 



Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7

• How many fish do both of you bring on an average day?

Let 𝑍 be the r.v. representing the total number of fish you both catch
𝔼 𝑍 = 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌 = 3 + 7 = 10

• You can sell each for $10 per fish, but you need $15 (total) for expenses. 
What is your average profit?

𝔼 10𝑍 − 15 = 10𝔼 𝑍 − 15 = 100 − 15 = 85



Coin Tosses

If we flip a coin twice, what is the expected number of heads that come 
up?



Coin Tosses

If we flip a coin twice, what is the expected number of heads that come 
up?

Let 𝑌 be the r.v. representing the total number of heads

𝑝𝑌 𝑦 =

1

4
 if 𝑦 = 0

1

2
 if 𝑦 = 1

1

4
 if 𝑦 = 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Coin Tosses

If we flip a coin twice, what is the expected number of heads that come 
up?

Let 𝑌 be the r.v. representing the total number of heads

𝑝𝑌 𝑦 =

1

4
 if 𝑦 = 0

1

2
 if 𝑦 = 1

1

4
 if 𝑦 = 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝔼 𝑌 = Σ𝑘∈Ω𝑌
𝑝𝑌 𝑘 ⋅ 𝑘 =

1

4
⋅ 0 +

1

2
⋅ 1 +

1

4
⋅ 2 = 1



Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the r.v. representing the total number of heads.



Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the r.v. representing the total number of heads.

Make a prediction --- what should 𝔼[𝑋] be?

a) 𝑛 + 𝑝
   b) 𝑝𝑛

   c) 𝑛𝑝
   d) 𝑛/𝑝

Fill out the poll everywhere: 

pollev.com/cse312



Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the r.v. representing the total number of heads.

𝔼 𝑋 = σ𝑘=0
𝑛 𝑘 ⋅ ℙ(𝑋 = 𝑘) =  σ𝑘=0

𝑛 𝑘 ⋅ 𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

Ok, but what actually is it?

I don’t have intuition for this 

formula.



Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

𝔼 𝑋 = σ𝑘=0
𝑛 𝑘 ⋅ ℙ(𝑌 = 𝑘) = σ𝑘=0

𝑛 𝑘 ⋅ 𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

= σ𝑘=1
𝑛 𝑘 ⋅ 𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘

= σ𝑘=1
𝑛 𝑛 ⋅ 𝑛−1

𝑘−1
𝑝𝑘(1 − 𝑝)𝑛−𝑘

= 𝑛𝑝 σ𝑖=0
𝑛−1 𝑛−1

𝑖
𝑝𝑖(1 − 𝑝)𝑛−1−𝑖

= 𝑛𝑝(𝑝 + (1 − 𝑝))𝑛−1= 𝑛𝑝

𝑘
𝑛

𝑘
= 𝑛

𝑛 − 1

𝑘 − 1

Binomial Theorem!

We did it! And all it took was a clever application of the binomial theorem, 

setup by a very non-obvious application of an obscure combinatorial identity. Ezpz.



Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

𝔼 𝑋 = σ𝑘=0
𝑛 𝑘 ⋅ ℙ(𝑌 = 𝑘) = σ𝑘=0

𝑛 𝑘 ⋅ 𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

= σ𝑘=1
𝑛 𝑘 ⋅ 𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘

= σ𝑘=1
𝑛 𝑛 ⋅ 𝑛−1

𝑘−1
𝑝𝑘(1 − 𝑝)𝑛−𝑘

= 𝑛𝑝 σ𝑖=0
𝑛−1 𝑛−1

𝑖
𝑝𝑖(1 − 𝑝)𝑛−1−𝑖

= 𝑛𝑝(𝑝 + (1 − 𝑝))𝑛−1= 𝑛𝑝

𝑘
𝑛

𝑘
= 𝑛

𝑛 − 1

𝑘 − 1

Binomial Theorem!

We did it! And all it took was a clever application of the binomial theorem, 

setup by a very non-obvious application of an obscure combinatorial identity. Ezpz.



Linearity of Expectation

Extending this to n random variables, 𝑋1, 𝑋2, … , 𝑋𝑛

𝔼 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 = 𝔼 𝑋1 + 𝔼 𝑋2 + ⋯ + 𝔼 𝑋𝑛

This can be proven by induction.

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation



Indicator Random Variables

For any event 𝐴, we can define the indicator random variable 𝟏[𝐴] for 𝐴

𝟏 𝐴 = 𝑋 = ቊ
 1 if event A occurs
 0 otherwise

You’ll also see notation like:

    

ℙ 𝑋 = 1 = ℙ 𝐴
ℙ 𝑋 = 0 = 1 − ℙ(𝐴)

𝑝𝑋 𝑘 = ቐ
ℙ 𝐴  if 𝑘 = 1
1 − ℙ 𝐴  if 𝑘 = 0
0 otherwise

𝔼 𝑋
= 1 ⋅ 𝑝𝑋 1 + 0 ⋅ 𝑝𝑋(0)
= 𝑝𝑋 1 = ℙ(𝐴)



Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

What indicators can we define? What ‘Booleans’ have enough 
information to combine (add) and solve the problem?



Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

   



Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖



Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

    

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝



Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

         𝔼 𝑋𝑖 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝



Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

          𝔼 𝑋𝑖 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝

By Linearity of Expectation, 

𝔼 𝑋 = 𝔼 ෍

𝑖=1

𝑛

𝑋𝑖 = ෍

𝑖=1

𝑛

𝔼[𝑋𝑖]

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝



Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

          𝔼 𝑋𝑖 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝

By Linearity of Expectation, 

𝔼 𝑋 = 𝔼 ෍

𝑖=1

𝑛

𝑋𝑖 = ෍

𝑖=1

𝑛

𝔼 𝑋𝑖 = ෍

𝑖=1

𝑛

𝑝 = 𝑛𝑝

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝



Computing complicated expectations

We often use these three steps to solve complicated expectations

1. Decompose: Finding the right way to decompose the random 
variable into sum of simple random variables

𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛

2. LOE: Apply Linearity of Expectation
𝔼 𝑋 = 𝔼 𝑋1 + 𝔼 𝑋2 + ⋯ + 𝔼[𝑋𝑛]

3. Conquer: Compute the expectation of each 𝑋𝑖

Often 𝑋𝑖 are indicator random variables



Pairs with the same birthday

In a class of 𝑚 students, on average how many pairs of people have the 
same birthday?

Decompose: Let 𝑋 be the number of pairs with the same birthday

LOE:

Conquer:



Pairs with the same birthday

In a class of 𝑚 students, on average how many pairs of people have the 
same birthday?

Decompose: Let 𝑋 be the number of pairs with the same birthday

Define 𝑋𝑖𝑗  as follows:

𝑋𝑖𝑗 = ቊ
 1 if person i, j have the same bithday
 0 otherwise

          𝑋 = Σ𝑖,𝑗𝑋𝑖𝑗

LOE:

Conquer:



Pairs with the same birthday

In a class of 𝑚 students, on average how many pairs of people have the 
same birthday?

Decompose: Let 𝑋 be the number of pairs with the same birthday

Define 𝑋𝑖𝑗  as follows:

𝑋𝑖𝑗 = ቊ
 1 if person i, j have the same bithday
 0 otherwise

          𝑋 = Σ𝑖,𝑗𝑋𝑖𝑗

LOE:

𝔼 𝑋 = 𝔼 Σ𝑖,𝑗𝑋𝑖𝑗 = Σ𝑖,𝑗𝔼 𝑋𝑖𝑗

Conquer:



Pairs with the same birthday

In a class of 𝑚 students, on average how many pairs of people have the same 
birthday?

Decompose: Let 𝑋 be the number of pairs with the same birthday

Define 𝑋𝑖𝑗  as follows:

𝑋𝑖𝑗 = ቊ
 1 if person i, j have the same bithday
 0 otherwise

          𝑋 = Σ𝑖,𝑗𝑋𝑖𝑗

LOE:

𝔼 𝑋 = 𝔼 Σ𝑖,𝑗𝑋𝑖𝑗 = Σ𝑖,𝑗𝔼 𝑋𝑖𝑗

Conquer:

𝔼 𝑋𝑖𝑗 = ℙ 𝑋𝑖𝑗 = 1 =
365

365 ⋅ 365
=

1

365

𝔼 𝑋 =
𝑚

2
⋅ 𝔼 𝑋𝑖𝑗 =

𝑚

2
⋅

1

365



Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each 
place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 
(equally likely)

Let 𝑋 be the number of people that end up in front of their own name 
tag. Find 𝔼 𝑋 .

Decompose: 

What 𝑋𝑖 can we define that have the needed information?

LOE:

Conquer:



Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in 
front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 (equally likely)

𝑋 is the number of people that end up in front of their own name tag. Find 𝔼 𝑋 .

Decompose: Define 𝑋𝑖 as follows:

𝑋𝑖 = ቊ
 1 if person i sits infront of their own name tag
 0 otherwise

          

Note: 𝑋 = Σ𝑖=1
𝑛 𝑋𝑖

LOE:
𝔼 𝑋 = 𝔼[𝛴𝑖=1

𝑛 𝑋𝑖] = Σ𝑖=1
𝑛 𝔼 𝑋𝑖

Conquer:
These 𝑋𝑖 are not independent!

That’s ok!!



Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in 
front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 (equally likely)

𝑋 is the number of people that end up in front of their own name tag. Find 𝔼 𝑋 .

Decompose: Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if person i sits infront of their own name tag
 0 otherwise

          𝑋 = Σ𝑖=1
𝑛 𝑋𝑖

LOE:
𝔼 𝑋 = 𝔼[𝛴𝑖=1

𝑛 𝑋𝑖] = Σ𝑖=1
𝑛 𝔼 𝑋𝑖

Conquer:

𝔼 𝑋𝑖 = 𝑃 𝑋𝑖 = 1 =
1

𝑛 − 1
 𝔼 𝑋 = 𝑛 ⋅ 𝔼 𝑋𝑖 =

𝑛

𝑛 − 1



Extra Practice



Frogger

A frog starts on a 1-dimensional number line at 0. 

Each second, independently, the frog takes a unit step right with 
probability 𝑝1, to the left with probability 𝑝2, and doesn't move with 
probability 𝑝3, where 𝑝1 + 𝑝2 + 𝑝3 = 1. 

After 2 seconds, let 𝑋 be the location of the frog. Find 𝔼 𝑋 .



Frogger – Brute Force 

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a 
unit step right with probability 𝑝𝑅, to the left with probability 𝑝𝐿, and doesn't move with probability 
𝑝𝑆, where 𝑝𝐿 + 𝑝𝑅 + 𝑝𝑆 = 1. After 2 seconds, let 𝑋 be the location of the frog. Find 𝔼 𝑋 .

We could find the PMF by computing the probability for each value in the range of X, and then 
applying definition of expectation:

𝑝𝑋 𝑥 =

𝑝𝐿
2 𝑥 = −2

2𝑝𝐿𝑝𝑆 𝑥 = −1

2𝑝𝐿𝑝𝑅 + 𝑝𝑠
2 𝑥 =  0

2𝑝𝑅𝑝𝑆 𝑥 =  1

𝑝𝑅
2  𝑥 =  2

0 otherwise

𝔼 𝑿 = Σ𝜔𝑃 𝜔 𝑋 𝜔 = (−2)𝑝𝐿
2+ −1 2𝑝𝐿𝑝𝑆 + 0 ⋅ 2𝑝𝐿𝑝𝑅 + 𝑝𝑠

2 + 1 2𝑝𝑅𝑝𝑆 + (2)𝑝𝑅
2 = 2(𝑝𝑅 − 𝑝𝐿)

We think about the outcomes that correspond to each 

value of X and compute the probability of that. For 

example, X=0 happens when the frog doesn’t move – 

this means it either moved left and then right, or right 

and then left, or did not move both seconds.



Frogger – LOE

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a 
unit step right with probability 𝑝𝑅, to the left with probability 𝑝𝐿, and doesn't move with probability 
𝑝𝑆, where 𝑝𝐿 + 𝑝𝑅 + 𝑝𝑆 = 1. After 2 seconds, let 𝑋 be the location of the frog. Find 𝔼 𝑋 .

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቐ

 −1 if the frog moved left on the 𝑖th step
 0 otherwise
 1 if the frog moved right on the 𝑖th step

   

𝔼 𝑋𝑖 = −1 ⋅ 𝑝𝐿 + 1 ⋅ 𝑝𝑅 + 0 ⋅ 𝑝𝑆 = (𝑝𝑅 − 𝑝𝐿)

By Linearity of Expectation, 

𝔼 𝑋 = 𝔼 σ𝑖=1
2 𝑋𝑖 = σ𝑖=1

2 𝔼[𝑋𝑖] = 2(𝑝𝑅 − 𝑝𝐿)

Or we can apply LoE!



Frogger – LOE

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a 
unit step right with probability 𝑝𝑅, to the left with probability 𝑝𝐿, and doesn't move with probability 
𝑝𝑆, where 𝑝𝐿 + 𝑝𝑅 + 𝑝𝑆 = 1. After 60 seconds, let 𝑋 be the location of the frog. Find 𝔼 𝑋 .

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቐ

 −1 if the frog moved left on the 𝑖th step
 0 otherwise
 1 if the frog moved right on the 𝑖th step

   

𝔼 𝑋𝑖 = −1 ⋅ 𝑝𝐿 + 1 ⋅ 𝑝𝑅 + 0 ⋅ 𝑝𝑆 = (𝑝𝑅 − 𝑝𝐿)

By Linearity of Expectation, 

𝔼 𝑋 = 𝔼 σ𝑖=1
𝟔𝟎 𝑋𝑖 = σ𝑖=1

𝟔𝟎 𝔼[𝑋𝑖] =𝟔𝟎(𝑝𝑅 − 𝑝𝐿)

If we interested in a whole minute (60 sec), the first approach would be awful because we would need 

to compute many probabilities or deal with a gnarly summation! Instead, we can use LoE!
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