Victory Lap!

CSE 312 24su

“when life gives you lemons...use CLT to - >
find how many lemons you need to make = N
a good lemonade” :




Logistics

QA
. Midterm “makeup” clarification N\

. Final exam tomorrow

. Claris’s office hours tomorrow will start at 12:30 (not 12pm)
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One day...there was counting

We learned about tecniques to count the number
of possible outcomes in a set




LOi'S Of coun'l'ing. . Factorial: n! ways to rearrange n distinct things

Complementary counting: Counting the ways for A to not occur
ways for A to NOT occur = total options — ways for A to occur

Product rule: Sequential process with m, options in 1st step, m, options in 2", m5 in 3"
step, etc. we pick 1 option from each to form the outcome my - m, - ms - ...

Stars and bars: (";*7") ways to distribute n identical things to k distinct types

Picking k distinct elements from a group of n distinct elements

Permutations: P(n, k) if the order of Combinations: (},) if the order of the k
the k elements does matter elements does not matter

Finding the size of a union of sets-|[AUB U - |

Sum rule: If disjoint, |A| + |B| + - Inclusion-Exclusion: singles-doubles+triples-...



Counting Leads to...Probability

S A (discrete) probability space is a pair (Q, P) where: Y
« Qis the sample space
« P:Q — [0,1] is the probability measure.
- Uniform probability space: Every outcome equally likely to occur
A 1 |E|
. P(w) = o P(E) = 1o T

> Pick a sample space where every outcome is equally likely
> Find the size of the sample space (using counting techniques!)

> Define the event and count its size (using counting techniques!)
|E]

> Find the probability by doing P(E) = ol L




When we're given extra info...

Conditional Probability - “restrict the sample space”

Definition of cond. prob.: P(A|B) = Pf;gf)
Bayes’' theorem: P(B|A) = —P(A]::;H;(B)

Law of total probability:

P(A) = P(A|E))P(E,) + -+ + P(A|E)P(ER)
if E1, E,, ..., E, partition the sample space Q

Chain Rule: P(E; NE; Nn--NEy) =
P(E)P(E,|E1)P(ES|E; N EY) ...




maybe that info was irrelevant...

Independence

If events A and B are independent
P(A|B) = P(B),P(An B)P(A)P(B)

If events 4, B, C, ... are mutually independent
P(ANBACA-)=PAPB)PQ)..

If events A and B are conditionally independent on C:
P(A N B|C) = P(A|C)P(B|C)




Sometimes we're inte rested in Ng=x-
| analyzing quantitative properties &

Random Variables s’
Outcome Quantitative ‘
w € N nd B value
= - Range/Support
/ / . .
. / Qy is set of possible values X can be s
\ Probability Mass Function \J

px(k) = P(X = k)

Cumulative Distribution Function
Fy(k) =P(X < k)
Expectation
Weighted average of values in the support

Variance
Measure the spread of the distribution




maybe those quantitative
| properties are continuous...

Random Variables -

Outcome : Quantitative
w € X =» value

Range/Support
Qy is set of possible values X can be A

| Probability Density Function \7
fx(k) = P(X = k) = = Fy(k)
Cumulative Distribution Function
Fy(k) = P(X < k) = [* fi(x) dx

Expectation
Weighted average of values in the support

Variance
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Computing Expectations

\ Definition of Expectation

Definition of Expectation e o
Qy is set of possible values X can be

Linearity of Expectation
E[aX + bY + c] = aE[X] + DE[Y] + ¢

From the zoo of the random variables...

‘ Law of the Unconscious Statistician Ve
E[g(X0)] = Tkea, (9&) - px (), ElgX)] = [ 9(2) - fx(2) dz

Law of Total Expectation
7 EIX] = XEXIAIP(A), Tea, & - EIXIY = yD), [,y EIXIY = yldy




Computing Variance

Definition of Variance:
Var(X) = E[(X — E[X])?] = E[X?] — E[X]?

Properties of Variance:
Var(aX + b) = a*Var(X)
Var(X +Y) = Var(X) + Var(Y) if X and Y are independent




Var(X) =

Finding all that can be tedious..."

Zoo of Discrete Random Variables

X~Unif(a, b) X~Bin(n,p)

n

- px(k) = ( k) p(1—p)n*

px(k) = b—a+1
a+b
E[X] =— E[X] = np
(b—a)(b—a+2)
12 Var(X) = p(1-p) Var(X) = np(1—p)

X~Geo(p) X~NegBin(r,p) X~HypGeo(N,K,n)

K\(N-K
= 1>pr(1 o p)k—r px(k) _ (k)(;—k
: @)

px(k) = (1 -p)¥1p px(k) = <r

= K
ELX] =2 EIX] = ny

Var(X) = rd-p) K(N — K)(N —n)

p2 Var(X) = NZ(N — 1)




" Finding all that can be tedious. .. G

\ 200 of Continuous Random Variables

//’
X~Unif(a, b) X~Exp(A)
fx(k)=—fora<ks<b | fx(k)=24e* fork=0
N r(0 - tifask<bp | FxUO=1-elifk=0 _ N
( E[X] = a+b - S

2 1 \
(b — a)? Var(X) = Z |

Var(X) = =




One RV is always in our face...

Normal Random Variables!

To compute probabilities with normal RVs: Y,

Standardize the normal random variable: Z = X=#

Write probability expression in terms of ®(z) = P(Z < 2)
Look up the value(s) in the table

Central Limit Theorem

The sum of a bunch of i.i.d random variables can be
approximated as a normal random variable.




More than one RV? We got it!

Joint Distributions

Discrete Continuous
Joint PMF/PDF pxy(x,y) =PX =x,Y =y) frr(x,y) #PX =x,Y=y)
: X [y
Joint COF Fry(®,y) = ZZPX'Y(t' ) Fxy(x,y) = f f fxy(t,s)dsdt
t<x s<y =00 =00
Normalization Z Z pry(x,y) =1 f f fiy (6 y)dxdy = 1
X y —00 /=00
Marginal _ *
px@) = Y pry(x,y) =f
Marginal x g xr i@ = [ funay
Expectation E[g(X,Y)] = ZZQ(X: exy(xy) | E[g(X,Y)] = fm fmg(x, W fyy(x,y)dxdy
X vy -0 Y=o
Conditional giccailialiolive Pxy(X,¥) . fey(x,¥)
PME/PDF qF Py (¥) i fr )
Conditional E[X | Y = y] = xp (x I y) _ _ foo
St Z - BV =31 = | xfeively)ix

Independence

VX, ¥, xy (X, ¥) = px(X)py (¥)

VX, Y, fry(x,Y) = fx()fy(¥)




...and analyzing relationships

( Covariance )
Cov(X,Y) = E[(X — E[X])(Y — E[¥])] = E[XY] — E[X]E[Y] L/




Sometimes we know nothing...
| (or we don't care)

Tail Bounds ~

-Markov’s inequality - P(X > t) < @ S

« Use if X is non-negative and we know the expectation

I P . Var(t)
. - Chebyshev’'s inequality - P(|JX — E[X]| = ¢t) < = —_
Ny  Use if we know the expectation and variance of X N
\ » Gives better bounds with small variances \;
- =) @
e « Chernoff Bound P(X < (1—-6€)u) <e'\ 2/ and P(X =1+ 6)u) <e\ 3

* Useif X is a sum of independent Bernoulli random variables
L - Union Bound - P(AU B) < P(4) + P(B)
» Use if we don't have enough information to find the Lo




Sometimes we know nothing...
\ (and we wanf to find out)

Maximum Likelihood Estimation g

1. Write the likelihood function: L(x4, ..., x,; 6)

2. Take the log In(..) of the likelihood function
P 3. Take the derivative(s) of the log-likelihood functign
) 4. Set the derivatives to 0, and solve for the MLE(s) 6

~t 5. Verify it is a maximum with second derivative test >
(not required for 312) ‘




Lots of applications!

-Naive Bayes Spam Filtering

-Bloom Filters

- Efficient Distinct Elements

-Polling

- Multi-armed bandits (reinforcement learning)
-Randomized algorithm analysis

-Differential privacy

-Python and LaTeX




What's next?

I'm really going to miss this content...

N -CSE 421: Algorithms L7,
- (design algo s uses some combinatorics) '

-CSE 422 oolkit for Modern Algorithms
-CSE 426: Cryptography
-CSE 427: Computational Biology

o -CSE 431: Introduction to Theory of Computation .

p -CSE 446: Machine Learning (probability + linear algebra) N

| -CSE 447: Natural Language Processing v
-CSE 473: Artificial Intelligence (Bayes nets and such) ’
-CSE 490Q: Quantum Computing
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How do you want to sgend o
x class time today:

pollev.com/312
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Maximum Likelihood Estimation

Suppose a wildlife researcher is studying the population of a rare bird species
in a national park. The number of birds spotted each day follows a discrete
probability mass function: py(x; 8) = 6*(1 — 8). The researcher observed the
counts of birds for 30 days: x4, x5, .. x30 Flnd the MLE for 6.

[ Likelinood Function - L, -4q0) = T (€7 (1- &)

2. Loca—\\\de\mooc\ Wn(LC 3) zLx\ n(8) * w(\-9)

I
2. Denivan Ve: ae(\“w ") e T

4. gk 40 O %SOWQ L
x: . K go qe A 3 o N\
( L. - 5 O = ‘-‘}\__ :—<'=>'§‘Xi~9%7~'\—36'9
g \- é e \—9 1=\ . <
e s 5 A S =(30t2) Zag

fHinal avnswer
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More Busy Servers

In a large server farm, 1800 requests are processed independently by a web server. The

time taken for each request to be processed is an exponential random with parameter
0.5 seconds. —» €V <ach reqpest, averoge of g==2 Sel-

We havek\‘(v\-\expectations...a slow request is processed in more than 0.8 seconds.

LeY X~number oF slow vequests 4
What is the expected number of slow requests" Lot! ®°° ("L{\ 0 =

1. DELOMPOSE X1 = § 1ttt 16 €09 5 X D e o) E
2. ppPLL LOB EDX= B[S %] = Selx) - o3
2 (ONQUER: E{X(1=PIX:= 1)= L RS 508De \-PLR, < OD=I-(-e®°D=&

What is the variance of the number of slow requests’
we/\mou) X is sum ot W Xi's, So..

2\"“ (X)) = ze 04 (,\" 0.4 = \tm( —m

Xi ~Ber (€ “)

oY
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More Busy Servers

In a large server farm, 1800 requests are processed independently by a web server. The
time taken for each request to be processed is an exponential random with parameter
0.5 seconds.

We have low expectations...a slow request is processed in more than 0.8 seconds.

Let X ~namber of stow rquest: EWX] =W, Var (X)=-g =
Bound the probability there are at least 1500 slow requests using:

ChebysheVv’
(Ko 1500) =P (%~ 1 2 1500-1) £ PC\X-K\Z 500" W)
o<z
~ (00 - \‘*)Z

> Chernoff Bound X = ix w\r\ene he XS are. \WWdeperdet. So..
P(X=2\s00) ¢ o
O

K00 = (+ §) W > &= go =\
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More Busy Servers

In a large server farm, 1800 requests are processed independently by a web server. The
time taken for each request to be processed is an exponential random with parameter
0.5 seconds.

We have low expectations...a slow request is processed in more than 0.8 seconds.
Y ~namver of Slow requests  |Ler w=E(X] L o==Var (X) Sfom prev. parts,
Approximate the probability there are at least 1500 slow requests using:

> Central Limit Theorgm _o_oq> 5
l.Sexup Problem: X= 3_ X where K~ Ber(e and are i{d.

We wankx P(,X Z\gbb) APPL\( CON]’[/UUITV CoPRECTION
=P( X2 \waas

2. AP\ AT Rio m i, 500y CLT, X2 Y~ N(1,0%)

So, PCX21424.6) % PLY 21492.5) 4495 —
3. solve . STAWDAlO1Z€: P(Y 2 \4aq.6) = P(2 2 ==
WRI(E in @ - |- @ C%‘t\;-\«
sove

1foo.§
‘u(q« NaaAry (SOO \so\
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Thank you all for
an amazing quarter!! <3

have a great rest of the summer ©
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