Victory Lap! *CSE 312 24su*

*

"when life gives you lemons…use CLT to find how many lemons you need to make a good lemonade"

Midterm "makeup" clarification

Final exam tomorrow

Claris's office hours tomorrow will start at 12:30 (not 12pm)

Course evals reopened – fill out tonight for +1 point

See Ed post

One day...there was counting

We learned about tecniques to count the number of possible outcomes in a set

Lots of counting…

Factorial: n! ways to rearrange *n* distinct things

*Complementary counting***:** Counting the ways for A to **not** occur ways for A to NOT occur = total options $-$ ways for A to occur

Product rule: Sequential process with m_1 options in 1st step, m_2 options in 2nd, m_3 in 3rd step, etc. we pick 1 option from each to form the outcome $m_1 \cdot m_2 \cdot m_3 \cdot ...$

 \textit{stars} and bars: $\binom{n+k-1}{k-1}$ ways to distribute n <u>identical</u> things to k distinct types

Picking *k* **distinct elements from a group of** *n* **distinct elements**

Permutations: $P(n, k)$ if the **order of the k elements does matter**

Combinations: $\binom{n}{k}$ if the <u>order of the k</u> elements does **not** matter

Finding the size of a <u>union of sets</u> $\cdot | A \cup B \cup \cdots |$

Sum rule: If disjoint, $|A| + |B| + \cdots$ **Inclusion-Exclusion**: singles-doubles+triples-...

Counting Leads to…Probability

A **(discrete) probability space** is a pair (Ω,ℙ) where:

- \cdot Ω is the sample space
- $\mathbb{P}: \Omega \to [0,1]$ is the probability measure.

Uniform probability space: *Every outcome equally likely to occur* $\mathbb{P}(\omega) = \frac{1}{10}$ $\frac{1}{|\Omega|}, \mathbb{P}(E) = \frac{|E|}{|\Omega|}$ |ஐ|

> Pick a sample space where every outcome is **equally likely >** Find the size of the sample space (using counting techniques!) **>** Define the event and count its size (using counting techniques!) **>** Find the probability by doing $\mathbb{P}(E) = \frac{|E|}{|\Omega|}$

When we're given extra info…

Conditional Probability – "restrict the sample space"

Definition of cond. prob.: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Bayes' theorem: $\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(B)}$

Law of total probability:

 $\mathbb{P}(A) = \mathbb{P}(A|E_1)\mathbb{P}(E_1) + \cdots + \mathbb{P}(A|E_n)\mathbb{P}(E_n)$ if $E_1, E_2, ..., E_n$ partition the sample space Ω

Chain Rule: $\mathbb{P}(E_1 \cap E_2 \cap \cdots \cap E_n) =$ $\mathbb{P}(E_1)\mathbb{P}(E_2|E_1)\mathbb{P}(E_3|E_1 \cap E_2)$...

maybe that info was irrelevant…

Independence

If events A and B are *independent* $\mathbb{P}(A|B) = \mathbb{P}(B)$, $\mathbb{P}(A \cap B)\mathbb{P}(A)\mathbb{P}(B)$

If events A, B, C, ... are <u>mutually independent</u> $\mathbb{P}(A \cap B \cap C \cap \cdots) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$...

If events A and B are *conditionally independent* **on C:** $\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \mathbb{P}(B | C)$

Sometimes we're interested in analyzing quantitative properties

Random Variables

 Outcome $\omega \in \Omega$

Quantitative value

Range/Support Ω_X is set of possible values *X* can be

> **Probability Mass Function** $p_Y(k) = \mathbb{P}(X = k)$

Cumulative Distribution Function $F_X(k) = \mathbb{P}(X \leq k)$

Expectation

Weighted average of values in the support

Variance

Measure the spread of the distribution

maybe those quantitative properties are continuous...

Random Variables

 Outcome $\omega \in \Omega$

Quantitative value

Range/Support Ω_X is set of possible values *X* can be

Probability Density Function $f_X(k) = \mathbb{P}(X = k) = \frac{d}{dk} F_X(k)$

Cumulative Distribution Function $F_X(k) = \mathbb{P}(X \le k) = \int_{-\infty}^{k} f_X(x) dx$

Expectation

Weighted average of values in the support

Variance

Measure the spread of the distribution

Computing Expectations

Definition of Expectation

Definition of Expectation

 $\Omega_{\rm X}$ is set of possible values X can be

Linearity of Expectation $\mathbb{E}[aX + bY + c] = a \mathbb{E}[X] + b \mathbb{E}[Y] + c$

From the zoo of the random variables…

Law of the Unconscious Statistician $\mathbb{E}[g(X)] = \sum_{k \in \Omega_X} (g(k) \cdot p_X(k))$, $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(z) \cdot f_X(z) dz$ **Law of Total Expectation**

 $\mathbb{E}[X] = \sum E[X|A_i] \mathbb{P}(A_i)$, $\sum_{k \in \Omega_X} (y \cdot \mathbb{E}[X|Y=y])$, $\int_{-\infty}^{\infty} y \cdot \mathbb{E}[X|Y=y] dy$

Computing Variance

Definition of Variance: $Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$

Properties of Variance: $Var(aX + b) = a^2Var(X)$ $Var(X + Y) = Var(X) + Var(Y)$ if X and Y are independent

Zoo of *Discrete* **Random Variables** Finding all that can be tedious…

Zoo of *Continuous* **Random Variables** Finding all that can be tedious…

Normal Random Variables! One RV is always in our face...

To compute probabilities with normal RVs:

- **1. Standardize** the normal random variable: $Z = \frac{X-\mu}{Z}$ σ
- **2. Write probability expression in terms of** $\Phi(z) = \mathbb{P}(Z \leq z)$
- **3. Look up the value(s)** in the table

Central Limit Theorem

The sum of a bunch of i.i.d random variables can be **approximated** as a normal random variable.

More than one RV? We got it!

Joint Distributions

Covariance …and analyzing relationships

 $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Sometimes we know *nothing*... (or we don't care) # relatable

Tail Bounds

- Markov's inequality $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}$
	- \bullet Use if X is non-negative and we know the expectation
- Chebyshev's inequality $\mathbb{P}(|X-\mathbb{E}[X]| \ge t) \le \frac{\text{Var}(t)}{t^2}$
	- Use if we know the expectation **and** variance of
	- Gives better bounds with small variances
- Chernoff Bound $\mathbb{P}(X \leq (1-\delta)\mu) \leq e^{\left(-\frac{\delta^2\mu}{2}\right)}$ and $\mathbb{P}(X \geq (1+\delta)\mu) \leq e^{\left(-\frac{\delta^2\mu}{3}\right)}$
	- \bullet Use if X is a sum of independent Bernoulli random variables
- **Union Bound** $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$
	- Use if we don't have enough information to find the

Sometimes we know *nothing*... (and we *want* to find out)

Maximum Likelihood Estimation

1. Write the likelihood function: $\mathcal{L}(x_1, ..., x_n; \theta)$ **2. Take the log** (. .) **of the likelihood function 3. Take the derivative(s) of the log-likelihood function 4. Set the derivatives to 0, and solve for the MLE(s) 5. Verify it is a maximum with second derivative test** *(not required for 312)*

Lots of applications!

- •Naïve Bayes Spam Filtering
- •Bloom Filters
- •Efficient Distinct Elements
- •Polling
- •Multi-armed bandits (reinforcement learning)
- •Randomized algorithm analysis
- •Differential privacy

•Python and LaTeX

What's next? I'm really going to miss this content...

•CSE **421**: Algorithms (design algos – uses some combinatorics) •CSE **422**: Toolkit for Modern Algorithms •CSE **426**: Cryptography •CSE **427**: Computational Biology •CSE **431**: Introduction to Theory of Computation •CSE **446**: Machine Learning (probability + linear algebra) •CSE **447**: Natural Language Processing •CSE 473: Artificial Intelligence (Bayes nets and such) •CSE **490Q**: Quantum Computing

How do you want to spend pollev.com/312 class time today?

水

☆

Maximum Likelihood Estimation

Suppose a wildlife researcher is studying the population of a rare bird species in a national park. The number of birds spotted each day follows a discrete probability mass function: $p_x(x; \theta) = \theta^x(1 - \theta)$. The researcher observed the counts of birds for 30 days: $x_1, x_2, ..., x_{30}$. Find the MLE for θ .

1. Likelihood Function: $L(x_1, ..., x_{30}, \theta) = \prod_{i=1}^{30} (\theta^{x_i} (1-\Theta))$

2. Log-likelihood: In(L(...))= $\sum_{i=1}^{30} (x_i \cdot \ln (\theta) + \ln(1-\theta))$ 3. Derivative: $\frac{d}{d\theta}(\ln(U(-))) = \sum_{i=1}^{10} \frac{x_i}{\Theta}$ 4. Set to O S solve: $\Rightarrow \frac{\sum_{i=1}^{30} x_i}{\hat{\Theta}} = \frac{30}{1-\hat{\Theta}} \Rightarrow \sum_{i=1}^{30} x_i - \hat{\Theta} \sum_{i=1}^{30} x_i = 30. \hat{\Theta}$ on the final, this is a valid $\Sigma = (3012) \frac{c}{345}$ final answer!

How to write the likelihood function?
\nWe find the likelihood by multiplying the formula for the formula
$$
x
$$
.
\nWe find the likelihood by multiplying the formula $f(x)$
\nwe have likelihood by multiplying the equation $f(x)$.
\n $\frac{1}{x}$
\n $\frac{1}{x}$

More Busy Servers

In a large server farm, 1800 requests are processed independently by a web server. The time taken for each request to be processed is an exponential random with parameter 0.5 seconds. \rightarrow for each request, average of $\frac{1}{0.5}$ = 2 sec. We have **HiGH** expectations...a *slow request* is processed in more than 0.8 seconds. **What is the expected number of slow requests? What is the variance of the number of slow requests?** We know X is sum of <u>independent</u> X_i 's, so....
Var (X) = $\sum_{i=1}^{1800} \text{Var}(X_i) = \sum_{i=1}^{1800} e^{-0.4} (1-e^{-0.4}) = 1800(e^{-0.4}) (1-e^{-0.4})$ $X_i \sim Ber(C^{-0.4})$

More Busy Servers

In a large server farm, 1800 requests are processed independently by a web server. The time taken for each request to be processed is an exponential random with parameter 0.5 seconds.

We have low expectations…a *slow request* is processed in more than 0.8 seconds.

Let $X \sim$ number of slow request. $E[X] = H_1 Var(X) = \sigma^2$ **Bound the probability there are at least 1500 slow requests using:**

> Chebyshev's
P(X ≥ 1500) = P(X - M ≥ 1500 - M) ≤ P(1X - M) ≥ 1500 - M) \sim 2

$$
\leq \frac{1}{(1500-\mu)^2}
$$

 $>$ Chernoff Bound $x = \sum x_i$, where the x_i 's are independent. So... $P(X \ge 1500) \le e^{\frac{564}{3}}$
1500 = (1+ 8) N -> 8 = $\frac{1500}{11}$

More Busy Servers

In a large server farm, 1800 requests are processed independently by a web server. The time taken for each request to be processed is an exponential random with parameter 0.5 seconds.

We have low expectations...a *slow request* is processed in more than 0.8 seconds.
 $X \sim \text{number of slow requests}$. Let $\mu = E[X], \sigma^2 = \text{Var}(X)$ from prev. parts. *Approximate* **the probability there are at least 1500 slow requests using:** > Central Limit Theorem
1. Setup Problem: $X = \sum_{i=1}^{n} X_i$, where $X_i \sim Ber(e^{-0.09})$ and are 1.1.d.
We want $P(X \ge 1500)$ APPLY CONTINUITY CORRECTION 1499 MART 1500 100.1 1501 $= P(X_2) + 99.5)$ 2. Apply CLT: X is sum of i.i.d, so by CLT, $X \approx Y \sim N(\mu_1 \sigma^2)$ s_0 , PCX21499,5) \approx PLY 21499.5) So, PCX21499.5) \approx PCY 21499.5)
3. Solve . STANDa1012e: PCY 21499.5) = PCZ 2 $\frac{(499.5 - \mu)}{\sigma}$) = $1 - \overline{\Phi}(\frac{(499.5 - M)}{\pi})$ $WRTC$ in $\overline{0}$ sovæ

Thank you all for an amazing quarter!! <3

永

have a great rest of the summer \odot