
Victory Lap!
CSE 312 24su

“when life gives you lemons…use CLT to 
find how many lemons you need to make 

a good lemonade”



Midterm “makeup” clarification

Logistics

Final exam tomorrow

Claris’s office hours tomorrow will start at 12:30 (not 12pm)

Course evals reopened – fill out tonight for +1 point

See Ed post



One day…there was counting
We learned about tecniques to count the number 

of possible outcomes in a set



Lots of counting… 

Complementary counting: Counting the ways for A to not occur 
ways for A to NOT occur = total options − ways for A to occur

Permutations: 𝑃(𝑛, 𝑘) if the order of 
the k elements does matter

Product rule: Sequential process with 𝑚ଵ options in 1st step, 𝑚ଶ options in 2nd , 𝑚ଷ in 3rd

step, etc. we pick 1 option from each to form the outcome 𝑚ଵ ⋅ 𝑚ଶ ⋅ 𝑚ଷ ⋅ …

Picking 𝒌 distinct elements from a group of 𝒏 distinct elements

Combinations: ௡
௞ if the order of the k 

elements does not matter

Stars and bars: ௡ା௞ିଵ
௞ିଵ ways to distribute 𝑛 identical things to 𝑘 distinct types 

Finding the size of a union of sets - |𝑨 ∪ 𝑩 ∪⋯ |

Sum rule: If disjoint, 𝐴 + 𝐵 +⋯ Inclusion-Exclusion: singles-doubles+triples-…

Factorial: 𝑛! ways to rearrange 𝑛 distinct things



Counting Leads to…Probability

Uniform probability space: Every outcome equally likely to occur
ℙ 𝜔 = ଵ

|ஐ|
, ℙ 𝐸 = |ா|

|ஐ|

A (discrete) probability space is a pair (Ω, ℙ) where:
• 𝛀 is the sample space
• ℙ:Ω → [0,1] is the probability measure.

> Pick a sample space where every outcome is equally likely
> Find the size of the sample space (using counting techniques!)
> Define the event and count its size (using counting techniques!)
> Find the probability by doing ℙ 𝐸 = |ா|

|ஐ|



When we’re given extra info…
Conditional Probability – “restrict the sample space” 

Definition of cond. prob.: ℙ 𝐴 𝐵 = ℙ ஺∩஻
ℙ(஻)

Bayes’ theorem: ℙ 𝐵 𝐴 = ℙ ஺|஻ ℙ(஻)
ℙ(஻)

Law of total probability: 

ℙ 𝐴 = ℙ 𝐴 𝐸ଵ ℙ 𝐸ଵ + ⋯+ ℙ 𝐴 𝐸௡ ℙ(𝐸௡)
if 𝐸ଵ, 𝐸ଶ, … , 𝐸௡ partition the sample space Ω

Chain Rule: ℙ 𝐸ଵ ∩ 𝐸ଶ ∩ ⋯∩ 𝐸௡ =
ℙ 𝐸ଵ ℙ 𝐸ଶ 𝐸ଵ ℙ Eଷ Eଵ ∩ 𝐸ଶ …



maybe that info was irrelevant…
Independence

If events 𝑨 and 𝑩 are independent
ℙ 𝐴 𝐵 = ℙ 𝐵 ,ℙ A ∩ 𝐵 ℙ 𝐴 ℙ 𝐵

If events 𝑨 and 𝑩 are conditionally independent on 𝑪: 
ℙ 𝐴 ∩ 𝐵 𝐶 = ℙ 𝐴|𝐶 ℙ 𝐵|𝐶

If events 𝑨,𝑩, 𝑪,… are mutually independent
ℙ A ∩ 𝐵 ∩ 𝐶 ∩ ⋯ = ℙ 𝐴 ℙ 𝐵 ℙ 𝐶 …



Sometimes we’re interested in

Random Variables

analyzing quantitative properties

Range/Support
𝛀𝐗 is set of possible values 𝑋 can be

Probability Mass Function
𝑝௑ 𝑘 = ℙ(𝑋 = 𝑘)

Cumulative Distribution Function
𝐹௑ 𝑘 = ℙ(𝑋 ≤ 𝑘)

Expectation
Weighted average of values in the support

Variance
Measure the spread of the distribution

𝑋Outcome
𝜔 ∈ 𝛺

Quantitative
value



maybe those quantitative

Random Variables

properties are continuous…

Range/Support
𝛀𝐗 is set of possible values 𝑋 can be

Probability Density Function
𝑓௑ 𝑘 = ℙ 𝑋 = 𝑘 = ௗ

ௗ௞
𝐹௑(𝑘)

Cumulative Distribution Function
𝐹௑ 𝑘 = ℙ 𝑋 ≤ 𝑘 = ∫ି ஶ

௞ 𝑓௑ 𝑥 𝑑𝑥

Expectation
Weighted average of values in the support

Variance
Measure the spread of the distribution

𝑋Outcome
𝜔 ∈ 𝛺

Quantitative
value

Mobile User



Definition of Expectation

Computing Expectations

Definition of Expectation
𝛀𝐗 is set of possible values 𝑋 can be

Linearity of Expectation
𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝔼 𝑋 + 𝑏𝔼 𝑌 + 𝑐

From the zoo of the random variables…

Law of the Unconscious Statistician
𝔼 𝑔(𝑋) = ∑௞∈ஐ೉(𝑔(𝑘) ⋅ 𝑝௑ 𝑘 ), 𝔼 𝑔(𝑋) = ∫ି ஶ

ஶ 𝑔(𝑧) ⋅ 𝑓௑ 𝑧 d𝑧

Law of Total Expectation
𝔼 𝑋 = ∑𝐸 𝑋 𝐴௜ ℙ(𝐴௜), ∑௞∈ஐ೉(𝑦 ⋅ 𝔼 𝑋 𝑌 = 𝑦 ), ∫ି ஶ

ஶ 𝑦 ⋅ 𝔼 𝑋 𝑌 = 𝑦 d𝑦



Computing Variance

Definition of Variance: 
Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋 ଶ = 𝔼[𝑋ଶ] − 𝔼 𝑋 ଶ

Properties of Variance: 
Var 𝑎𝑋 + 𝑏 = 𝑎ଶVar(𝑋)
Var 𝑋 + 𝑌 = Var 𝑋 + Var(𝑌) if 𝑋 and 𝑌 are independent 



Zoo of Discrete Random Variables
Finding all that can be tedious…

𝒑𝑿 𝒌 =
𝟏

𝒃 − 𝒂 + 𝟏
𝔼 𝑿 =

𝒂 + 𝒃
𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝒃 − 𝒂 + 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒑𝑿 𝒌 = 𝟏 − 𝒑 𝒌ି𝟏𝒑

𝔼 𝑿 =
𝟏
𝒑

𝐕𝐚𝐫 𝑿 =
𝟏 − 𝒑
𝒑𝟐

𝑿~𝐆𝐞𝐨(𝒑)

𝒑𝑿 𝟎 = 𝟏 − 𝒑;
𝒑𝑿(𝟏) = 𝒑

𝔼 𝑿 = 𝒑

𝐕𝐚𝐫 𝑿 = 𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐞𝐫(𝒑)

𝒑𝑿 𝒌 =
𝒌 − 𝟏
𝒓 − 𝟏

𝒑𝒓 𝟏 − 𝒑 𝒌ି𝒓

𝔼 𝑿 =
𝒓
𝒑

𝐕𝐚𝐫 𝑿 =
𝒓(𝟏 − 𝒑)

𝒑𝟐

𝑿~𝐍𝐞𝐠𝐁𝐢𝐧(𝒓, 𝒑)

𝒑𝑿 𝒌 =
𝒏
𝒌

𝒑𝒌 𝟏 − 𝒑 𝒏ି𝒌

𝔼 𝑿 = 𝒏𝒑

𝐕𝐚𝐫 𝑿 = 𝒏𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐢𝐧(𝒏, 𝒑)

𝒑𝑿 𝒌 =
𝑲
𝒌

𝑵ି𝑲
𝒏ି𝒌
𝑵
𝒏

𝔼 𝑿 = 𝒏
𝑲
𝑵

𝐕𝐚𝐫 𝑿 =
𝑲(𝑵 − 𝑲)(𝑵 − 𝒏)

𝑵𝟐(𝑵 − 𝟏)

𝑿~𝐇𝐲𝐩𝐆𝐞𝐨(𝑵,𝑲, 𝒏)

𝒑𝑿 𝒌 =
𝝀𝒌𝒆ି𝝀

𝒌!

𝔼 𝑿 = 𝝀

𝐕𝐚𝐫 𝑿 = 𝝀

𝑿~𝐏𝐨𝐢(𝝀)



Zoo of Continuous Random Variables
Finding all that can be tedious…

𝒇𝑿 𝒌 = 𝟏
𝒃ି𝒂

for 𝒂 ≤ 𝒌 ≤ 𝒃

𝑭𝑿 𝒌 = 𝒙ି𝒂
𝒃ି𝒂

if 𝒂 ≤ 𝒌 < 𝒃

𝔼 𝑿 =
𝒂 + 𝒃
𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒇𝑿 𝒌 = 𝝀𝒆ି𝝀𝒌 for 𝒌 ≥ 𝟎
𝑭𝑿 𝒌 = 𝟏 − 𝒆ି𝝀𝒌 if 𝒌 ≥ 𝟎

𝔼 𝑿 =
𝟏
𝝀

𝐕𝐚𝐫 𝑿 =
𝟏
𝝀𝟐

𝑿~𝐄𝐱𝐩(𝝀)

𝒇𝑿 𝒌 =
𝟏

𝝈 𝟐𝝅
𝐞𝐱𝐩 −

𝒙 − 𝝁 𝟐

𝟐𝝈𝟐

𝑭𝑿 𝒌 = 𝚽 𝒌ି𝝁
𝝈

𝔼 𝑿 = 𝝁
𝐕𝐚𝐫 𝑿 = 𝝈𝟐

𝑿~𝒩(𝝁, 𝝈𝟐)



Normal Random Variables!
One RV is always in our face…

To compute probabilities with normal RVs: 
1. Standardize the normal random variable: 𝑍 = ௑ିఓ

ఙ
2. Write probability expression in terms of 𝚽 𝐳 = ℙ(Z ≤ 𝑧)
3. Look up the value(s) in the table

Central Limit Theorem
The sum of a bunch of i.i.d random variables can be 
approximated as a normal random variable. 



Joint Distributions
More than one RV? We got it!



Covariance

…and analyzing relationships

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀]



Tail Bounds

Sometimes we know nothing…
(or we don’t care)#relatable

• Markov’s inequality - ℙ 𝑋 ≥ 𝑡 ≤ 𝔼 ௑
௧

• Use if 𝑋 is non-negative and we know the expectation

• Chebyshev’s inequality - ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤ ୚ୟ୰ ୲
௧మ

• Use if we know the expectation and variance of 𝑋
• Gives better bounds with small variances

• Chernoff Bound  ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒 ିഃ
మഋ
మ and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒 ିഃ

మഋ
య

• Use if 𝑋 is a sum of independent Bernoulli random variables 
• Union Bound - ℙ 𝐴 ∪ 𝐵 ≤ ℙ 𝐴 + ℙ(𝐵)

• Use if we don’t have enough information to find the 



Maximum Likelihood Estimation

Sometimes we know nothing…
(and we want to find out)

1. Write the likelihood function: ℒ 𝑥ଵ,… , 𝑥௡; 𝜃
2. Take the log 𝒍𝒏(. . ) of the likelihood function
3. Take the derivative(s) of the log-likelihood function
4. Set the derivatives to 0, and solve for the MLE(s) ෡𝜽
5. Verify it is a maximum with second derivative test 

(not required for 312)



Lots of applications!
•Naïve Bayes Spam Filtering
•Bloom Filters
•Efficient Distinct Elements
•Polling
•Multi-armed bandits (reinforcement learning)
•Randomized algorithm analysis
•Differential privacy

•Python and LaTeX



What’s next?

•CSE 421: Algorithms 
(design algos – uses some combinatorics)

•CSE 422: Toolkit for Modern Algorithms 
•CSE 426: Cryptography 
•CSE 427: Computational Biology 
•CSE 431: Introduction to Theory of Computation
•CSE 446: Machine Learning (probability + linear algebra) 
•CSE 447: Natural Language Processing 
•CSE 473: Artificial Intelligence (Bayes nets and such) 
•CSE 490Q: Quantum Computing

I’m really going to miss this content…



How do you want to spend

pollev.com/312
class time today?



Maximum Likelihood Estimation
Suppose a wildlife researcher is studying the population of a rare bird species 
in a national park. The number of birds spotted each day follows a discrete 
probability mass function: 𝑝௑ 𝑥; 𝜃 = 𝜃௫(1 − 𝜃). The researcher observed the 
counts of birds for 30 days: 𝑥ଵ, 𝑥ଶ, … , 𝑥ଷ଴. Find the MLE for 𝜃.

Mobile User
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More Busy Servers
In a large server farm, 1800 requests are processed independently by a web server. The 
time taken for each request to be processed is an exponential random with parameter 
0.5 seconds. 
We have low expectations…a slow request is processed in more than 0.8 seconds. 

What is the expected number of slow requests?

What is the variance of the number of slow requests? 

Mobile User



More Busy Servers
In a large server farm, 1800 requests are processed independently by a web server. The 
time taken for each request to be processed is an exponential random with parameter
0.5 seconds. 
We have low expectations…a slow request is processed in more than 0.8 seconds. 

Bound the probability there are at least 1500 slow requests using: 
> Chebyshev’s

> Chernoff Bound
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More Busy Servers
In a large server farm, 1800 requests are processed independently by a web server. The 
time taken for each request to be processed is an exponential random with parameter 
0.5 seconds. 
We have low expectations…a slow request is processed in more than 0.8 seconds. 

Approximate the probability there are at least 1500 slow requests using: 
> Central Limit Theorem

Mobile User



Thank you all for

have a great rest of the summer 
an amazing quarter!! <3
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