
Even More Applications!
Differential Privacy, How to Lie…

CSE 312 24Su
Lecture 24

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Logistics

> Ed post about course grades

> Optional Midterm Makeup Opportunity released, closes Friday
   (see Ed post)

> Reminder to fill out course evaluations (+1 extra point), closes tonight

> HW6 due tonight (late due date on Wednesday) 
   solutions for HW6 released on Thursday morning
   your answer to Q3 can include a summation

> Review session tomorrow with Lim and Michael at 2pm

> Bring questions to Wednesday’s lecture!! 



Tail Bounds In The Wild



Tail Bounds – Summary 

• Markov’s inequality - ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]

𝑡
•  Use if 𝑋 is non-negative and we know the expectation

•  Useful when we don’t know much about 𝑋

• Chebyshev’s inequality - ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var t

𝑡2

•  Use if we know the expectation and variance of 𝑋
•  Gives better bounds with small variances

• Chernoff Bound

•  Use if 𝑋 is a sum of independent Bernoulli random variables 

•  Gives a very good bound usually, and is especially helpful when 𝑋 is binomial 
 and we can’t easily computationally compute some summations/probability

• Union Bound - ℙ 𝐴 ∪ 𝐵 ≤ ℙ 𝐴 + ℙ(𝐵) (technically not a tail bound…)
•Use if we don’t have enough information to find the union (e.g,. ways for at least of __ to 
occur, for A, or B, or C, or … to occur)

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3



Algorithm Analysis

https://xkcd.com/1667



Randomized Algorithms

Randomized algorithm use randomness in the computation

Many algorithms incorporate some level of randomness

We can use the probabilistic techniques we’ve learned about in this 
class to analyze these algorithms! 

Today…using tail bounds for analysis in randomized algorithms



Two Common Types

Las Vegas Algorithms: We will keep running the algorithm (randomly 
looking for the solution) till we get a good solution.
What is a bound on the running time for this? 

Monte Carlo Algorithms: We will stop at some fixed number of attempts 
regardless of whether a good solution was found. 
What is the probability a correct solution was found? 



Graphs

A pair of 

> Set of vertices/nodes

> Set of edges between the vertices

• Weighted graphs have weighted edges

• Directed graphs have edges that either 

go from A to B, or B to A



Maximum Cut Problem

The problem: partition the nodes of a graph into two sets A and B such 
that the number of edges between the sets is maximized
real world examples: binary classification

The cut is the set of edges between 
the nodes in the two sets 
(goal: maximize the number of edges in the cut)
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Maximum Cut Problem

The problem: partition the nodes of a graph into two sets A and B such 
that the number of edges between the sets is maximized
real world examples: binary classification

The cut is the set of edges between 
the nodes in the two sets 
(goal: maximize the number of edges in the cut)

Simple randomized algorithm: 

Each node goes to A or B with probability 1/2



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X  

2. Apply Markov’s Ineqality. 

ℙ 𝑋 ≥ 𝑘 ≤
𝔼[𝑋]

𝑘



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X . 𝑋𝑖 = 1 of 𝑖’th edge is in the cut. ℙ 𝑋𝑖 = 1 =
1

2

   𝑋 = σ𝑖=1
𝑛 𝑋𝑖 --> 𝔼 𝑋 = σ𝑖=1

𝑛 𝔼 𝑋𝑖 =
𝑛

2

2. Apply Markov’s Ineqality. ℙ 𝑋 ≥ 𝑛/3 ≤
𝑛/2

𝑛/3
 --> taking complement..

ℙ 𝑋 ≤ 𝑛/3 = 1 − ℙ 𝑋 ≥
𝑛

3
≥ 1 − 3/2 = −0.5          a trivial bound

ℙ 𝑋 ≥ 𝑘 ≤
𝔼[𝑋]

𝑘



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X . 𝑋𝑖 = 1 of 𝑖’th edge is in the cut. ℙ 𝑋𝑖 = 1 =
1

2

   𝑋 = σ𝑖=1
𝑛 𝑋𝑖 --> 𝔼 𝑋 = σ𝑖=1

𝑛 𝔼 𝑋𝑖 =
𝑛

2

2. Apply Markov’s Ineqality. 

ℙ 𝑋 ≤ 𝑛/3 = ℙ 𝑛 − 𝑋 ≥ 𝑛 − 𝑛/3 ≤
𝔼 𝑛−𝑋

𝑛−
𝑛

3

=
𝑛−𝑛/2

𝑛−𝑛/3
=

𝑛/2

2𝑛/3
 = 3/4 --> a trick!

You don’t need to know 
this trick in this class



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

see 3.2 here for explanation

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Chebyshev’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X . 𝔼 𝑋 =
𝑛

2
   2. Find Var(𝑋). Var 𝑋 =

𝑛

4
 (see 3.2 here for explanation)

2. Apply Chebyshev’s Ineqality. 
ℙ 𝑋 ≤ 𝑛/3 = 

ℙ |𝑋 − 𝔼[𝑋]| ≥ 𝑘 ≤
Var 𝑋

𝑘2

https://home.ttic.edu/~madhurt/courses/toolkit2013/lecture3.pdf


Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Chebyshev’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X . 𝔼 𝑋 =
𝑛

2
      2. Find Var(𝑋). Var 𝑋 =

𝑛

4
 

2. Apply Chebyshev’s Ineqality. 

ℙ 𝑋 ≤ 𝑛/3 = ℙ 𝑋 −
𝑛

2
≤

𝑛

3
−

𝑛

2
≤ ℙ 𝑋 −

𝑛

2
≤ −

𝑛

6
+ ℙ 𝑋 −

𝑛

2
≥

𝑛

6
 

                         ≤ ℙ 𝑋 −
𝑛

2
≥

𝑛

6
≤

𝑛/4

𝑛/6 2  =
9

𝑛

ℙ |𝑋 − 𝔼[𝑋]| ≥ 𝑘 ≤
Var 𝑋

𝑘2



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability ½

Better, Las Vegas algorithm: 

Keep doing this till there is a large cut found (i.e., 𝑋 ≥ 𝑛/3)

What is the probability that in the first 20 trials, we will have succeeded? 



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability ½

Better, Las Vegas algorithm: 

Keep doing this till there is a large cut found (i.e., 𝑋 ≥ 𝑛/3)

What is the probability that in the first 20 trials, we will have succeeded? 

Let 𝑋 be the number of trials is takes. 𝑋 ~ Geo 𝑝 ≤
9

𝑛

So, ℙ 𝑋 ≤ 20 ≤ 1 − 1 −
9

𝑛

20



Graph Coloring Problem

The problem: color each node red, blue, or green, BUT minimize nodes 
with the same color sharing an edge (i.e., max. edges between distinct) 
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation
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Graph Coloring Problem

The problem: color each node red, blue, or green, BUT minimize nodes 
with the same color sharing an edge (i.e., max. edges between distinct) 
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation

Simple algorithm: Randomly pick a color for each node

Probability of edge 𝑒 sharing a color (miscoloring) is 
1

3
, so…

𝔼 𝑆𝑒 =
1

3
 where 𝑆𝑒 is whether edge is miscolored

𝑆 (num. of miscolored edges): 𝑆 = σ𝑖
𝑛 𝑆𝑒-->𝔼 𝑆 =

𝑛

3

So, by Markov’s inequality, 

ℙ 𝑆 ≥ 1.1 ⋅
𝑛

3
≤

𝑛/3

1.1⋅𝑛/3
 =

1

1.1
≈ 0.91

The probability of the algorithm miscoloring more than a third edges has a high upper bound  



Graph Coloring Problem

The problem: color each node red, blue, or green, BUT minimize nodes 
with the same color sharing an edge (i.e., max. edges between distinct) 
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation

Simple algorithm: Randomly pick a color for each node

𝑆 (num. of miscolored edges): 𝑆 = σ𝑖
𝑛 𝑆𝑒-->𝔼 𝑆 =

𝑛

3

So, by Markov’s inequality, 

ℙ 𝑆 ≥ 1.1 ⋅
𝑛

3
≤

𝑛/3

1.1⋅𝑛/3
 =

1

1.1
≈ 0.91

We can use a Monte Carlo algorithm! 

Keep repeating the algorithm 𝑡 times. 

Probability you fail to find a good coloring is at most 
1

1.1

𝑡

probability is very low with high values of 𝑡



If you like this kind of stuff...

• CSE 421 covers algorithms (like min cut, graph color, and more!) 

• CSE 431 covers the theory behind this algorithms (which includes 
analysis of randomize algorithms!) 



Differential Privacy



Privacy Preservation

A real-world example (adapted from The Ethical Algorithm by Kearns and 
Roth; based on protocol by Warner [1965]).

And gives a sense of how randomness is actually used to protect privacy.



Privacy Preservation with Randomness

You’re working with a social scientist. They want to get accurate data on 
the rate at which people cheat on their romantic partners. 

We know about polling accuracy! 

> Use CLT or a tail-bound to estimate the needed number 𝑛 get a 
guaranteed good estimate, right?

> Do a poll, call up a random sample of adults and ask them “have you 
ever cheated on your romantic partner?”

You do that, and somehow, no one says they cheated. I wonder why…



What’s the problem?

People lie. 

Or they might be concerned about you keeping this data.

Databases can be leaked (or infiltrated. Or subpoenaed).

You don’t want to hold this data, and the people you’re calling 
don’t want you to hold this data.



Doing It Better!

You don’t need to know who was cheating. Just how many people were. 

We have two concerns with this: 

> Will it now be private? 

> Will we be able to make accurate estimates using this data? 

Here’s an idea:

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’



Will it be private?

If you are someone who has cheated, and you report heads, can that be 
used against you? Not substantially – just blame it on the coin!

You discover your partner said heads (𝐻), what’s the probability that 
they cheated (𝐶)? 

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’



Will it be private?

If you are someone who has cheated, and you report heads, can that be 
used against you? Not substantially – just blame it on the coin!

You discover your partner said heads (𝐻), what’s the probability that 
they cheated (𝐶)? 

ℙ 𝐶 𝐻 =
ℙ(𝐻|𝐶)⋅ℙ(𝐶)

ℙ(𝐻)
 =

1⋅ℙ(𝐶)
1

2
ℙ(𝐶) +1⋅ℙ(𝐶)

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’



Will it be private?

If you are someone who has cheated, and you report heads, can that be 
used against you? Not substantially – just blame it on the coin!

You discover your partner said heads (𝐻), what’s the probability that 
they cheated (𝐶)? 

ℙ 𝐶 𝐻 =
ℙ(𝐻|𝐶)⋅ℙ(𝐶)

ℙ(𝐻)
 =

1⋅ℙ(𝐶)
1

2
ℙ(𝐶) +1⋅ℙ(𝐶)

Is this a substantial change?

No. For real world values (~15%) of ℙ(𝐶), the probability estimate would 
increase (to ~26%). But that isn’t too damaging. 

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’



But will it be accurate?

But we’ve lost our data haven’t we? People answered a different question. 
Can we still estimate how many people cheated?

We poll 𝑛 people. 
𝑋 is number of people who said “heads”, 𝑌 is number who cheated in sample,
𝑝 is true probability of cheating in the population.

Can we make an estimate for 𝒀? We would use MLE but intuitively…
𝑌 = 

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’



But will it be accurate?

But we’ve lost our data haven’t we? People answered a different question. 
Can we still estimate how many people cheated?

We poll 𝑛 people. 
𝑋 is number of people who said “heads”, 𝑌 is number who cheated in sample,
𝑝 is true probability of cheating in the population.

Can we make an estimate for 𝒀? We would use MLE but intuitively…
𝑌 = 2 𝑋 −

𝑛

2
, this turns out to be an unbiased estimator

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’



But will it be accurate?

We poll 𝑛 people. 
𝑋 is number of people who said “heads”, 𝑌 is number who cheated in sample,
𝑝 is true probability of cheating in the population.

What about the variance of the estimates? 

If we did not do the anonymous poll, and just asked directly…

𝐴~Bin 𝑛, 𝑝 → Var 𝐴 = 𝑛𝑝 1 − 𝑝 ≤
𝑛

4

 With this “anonymized” poll, the variance of our estimate is…

 Var 𝑌 = Var 2 𝑋 −
𝑛

2
= 4Var 𝑋 −

𝑛

2
= 4Var 𝑋 ≤ 𝑛 

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’



But will it be accurate?

Details for computing Var(𝑋):

ℙ 𝑋𝑖 = 1 =
1

2
+

1

2
⋅ 𝑝, 𝑋 = σ𝑖=1

𝑛 𝑋𝑖 , 𝔼 𝑋 =
1

2
+

𝑛𝑝

2
=

𝑛

2
+

1

2
𝔼 𝑌

𝔼 𝑋 =
𝑛

2
+

1

2
𝔼[𝑌]

𝑌 = 2 𝑋 −
𝑛

2

Var 𝑋 = Var σ𝑋𝑖 = σVar 𝑋𝑖

Var 𝑋𝑖 ? It’s an indicator with parameter 𝑝 + 1 − 𝑝 ⋅
1

2
=

1

2
+

𝑝

2

So Var 𝑋𝑖 =
1

2
+

𝑝

2

1

2
−

𝑝

2

Var 𝑌 = 4Var 𝑋 = 4𝑛Var 𝑋𝑖 = 4𝑛
1

2
+

𝑝

2

1

2
−

𝑝

2
≤

4𝑛

4
= 𝑛

The variance is 4 times as much as it would have been for a non-anonymous poll.



But will it be accurate?

We poll 𝑛 people. 
𝑋 is number of people who said “heads”, 𝑌 is number who cheated in sample,
𝑝 is true probability of cheating in the population.

What about the variance of the estimates? 

If we did not do the anonymous poll, and just asked directly…

𝐴~Bin 𝑛, 𝑝 → Var 𝐴 = 𝑛𝑝 1 − 𝑝 ≤
𝑛

4

 With this “anonymized” poll, the variance of our estimate is…

 Var 𝑌 = Var 2 𝑋 −
𝑛

2
= 4Var 𝑋 −

𝑛

2
= 4Var 𝑋 ≤ 𝑛 

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’



Can we use Chernoff?

What happens with n = 1000 people?

What range will we be within at least 95% of the time?

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = σ𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
 and ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −

𝛿2𝜇

2

(Multiplicative) Chernoff Bound

Goal: Use a bound to understand how far this estimate tends to be from true value



 Can’t bound 𝛿 without bounding 𝑝

The right tail is the looser bound, so ensuring the right tail is less than 
2.5% gives us the needed guarantee.

ℙ 𝑌 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
= exp −

𝛿21000𝑝

3
≤ .025

−
𝛿21000𝑝

3
≤ ln(.025)

−𝛿2≤
3⋅ln .025

1000𝑝

𝛿 ≥
−3ln(.025)

1000𝑝

As 𝑝 → 0, 𝛿 → ∞ – we’re not actually making a claim anymore.



A different inequality

If we try to use Chernoff, we’ll hit a frustrating block.

Since 𝜇 depends on 𝑝, 𝑝 appears in the formula for 𝛿. And we wouldn’t 
get an absolute guarantee unless we could plug in a 𝑝.

And it’ll turn out that as 𝑝 → 0 that 𝛿 → ∞ so we don’t say anything 
then.

Luckily, there’s always another bound…



Hoeffding’s Inequality

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. Why?

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent RVs, each with range [0,1]. 
Let ത𝑋 = σ𝑋𝑖/𝑛,  and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡2

Hoeffding’s Inequality



𝑌 = 2 𝑋 −
𝑛

2
 or 𝑋 =

𝑌+𝑛

2

𝑋 − 𝔼 𝑋

=
𝑌+𝑛

2
− 𝔼

𝑌+𝑛

2

=
𝑌+𝑛

2
− 𝔼

𝑌

2
−

𝑛

2

=
𝑌

2
− 𝔼

𝑌

2

=
1

2
𝑌 − 𝔼 𝑌  

So 𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if 
1

2
𝑌 − 𝔼 𝑌 ≥ 𝑡 iff 𝑌 − 𝔼 𝑌 ≥ 2𝑡.



Hoeffding’s Inequality

How close will we be with n=1000 with probability at least .95?

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent RVs, each with range [0,1]. 
Let ത𝑋 = σ𝑋𝑖/𝑛,  and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡2

Hoeffding’s Inequality



Margin of Error

ℙ 𝑌 − 𝔼 𝑌 ≥ 𝑡 = ℙ 𝑋 − 𝔼 𝑋 ≥ 𝑡/2 ≤ 2 exp −2𝑛𝑡2 ≤ .05

For 𝑛 = 1000, we get:

2 exp −2𝑛
𝑡

2

2
≤ .05 ⇒ −

2000𝑡2

4
≤ ln .025 ⇒ 𝑡 ≤ .086. 

ℙ 𝑌 − 𝔼 𝑌 ≥ .086 ≤ .05

So our margin of error is about 8.6%.

To get a margin-of-error of 5% need 2 exp −2𝑛
.05

2

2
≤ .05

𝑛 ≥ 2952



How much do we lose?

We lose a factor of two in the length of the margin (equivalently, we’d 
need to talk to 4 times as many people to have the same confidence.

You can also control this tradeoff. 

Want more accuracy? Make it roll a die: report 1 if cheated (truth o/w)

Want more security? Make it Bernoulli with probability 𝑝 ≫
1

2
 or cheated 

have the same report (e.g. report “die roll 1 [and didn’t cheat]” or “die 
roll 2-6 [or did cheat]”



In The Real World

Injecting random ness to preserve privacy is a real thing.

Instead of having everyone flip a coin, “random noise” can be inserted 
after all the data has been collected.

Differential privacy is being used to protect the 2020 Census data. 

The overall count of people in each state is exact (well, exactly the data 
they collected). But the data per block or per city will be randomized to 
protect against . 

This video nicely explains what’s involved. Notice that the accuracy 
guarantees come in the same “inside-margin-of-error-with-probability” 
guarantees we’ve been giving for our randomness (just much stronger).

https://www.youtube.com/watch?v=pT19VwBAqKA


How to Lie With Statistics



Acknowledgements

“How to Lie with Statistics” by Darrell Huff (1954) 

Previous versions of this lecture by Stefano Tessaro, Anna Karlin and 
Alex Tsun 
Jevin West “Naked Statistics: Stripping the Dread from Data” by Charles Wheelan 
And more!



“The book”

Published in 1954, over 500,000 copies sold 

• “A great introduction to the use of statistics, and a great refresher for 
anyone who’s already well versed in it” - Bill Gates. 

• Doesn’t teach how to lie with statistics, but how we are/can be lied to 
using statistics

• In the current age, we are lied to all the time, e.g., by politicians, and 
marketers.
• Often make decisions based on these lies: “4 out of 5 dentists recommend….”



Some of the ways we can get fooled…

> Sampling

> Faking Distributions

> Hypothesis testing + p-hacking

> There’s so much more!! 
    Simpson’s paradox, base rate fallacy, gambler’s fallacy, spurious correlations, etc.



Statistical Inference

Making an estimate or prediction about a population based on a sample.



Statistical Inference gone wrong

Making an estimate or prediction about a population based on a sample.

For example…

“The Literary Digest” Magazine poll to predict 1936 election. 
Alfred Landon vs. Franklin D Roosevelt 

10 million surveys, 2.4 million responses subscribers

owners of cars and telephones on a List

Electoral Votes Prediction Actual

Landon 370 8

Roosevelt 161 523



Statistical Inference gone wrong

Making an estimate or prediction about a population based on a sample.

For example…

“The Literary Digest” Magazine poll to predict 1936 election. 
Alfred Landon vs. Franklin D Roosevelt 

10 million surveys, 2.4 million responses subscribers

owners of cars and telephones on a List

Electoral Votes Prediction Actual

Landon 370 8

Roosevelt 161 523



Statistical Inference gone wrong

Making an estimate or prediction about a population based on a sample.

For example…

“The Literary Digest” Magazine poll to predict 1936 election. 
Alfred Landon vs. Franklin D Roosevelt 

10 million surveys, 2.4 million responses subscribers

owners of cars and telephones on a List

Electoral Votes Prediction Actual

Landon 370 8

Roosevelt 161 523

Problem: 
The survey was not representative! 



Sampling

We’ve often said “Let 𝑋1, 𝑋2,…,𝑋𝑛 be i.i.d samples from a distribution”…

• Not representative
•Voluntary response bias (24% responded) 

•Not the right population (more money/education
/info than average American) 

• Not random
•Convenience sampling

More sampling doesn’t fix bad sampling techniques.

This i.i.d. assumption is often a great place to start with doing analysis! 
But be careful with the conclusions drawn from the analysis. 



Sampling

We’ve often said “Let 𝑋1, 𝑋2,…,𝑋𝑛 be i.i.d samples from a distribution”…

• e.g., MLEs – we use some samples from a distribution to estimate a 
parameter to a distribution, and use this to make predictions for the future
•  selection bias in data --> biased model --> biased and incorrect conclusions

This i.i.d assumption is often a great place to start with doing analysis! 
But be careful with the conclusions drawn from the analysis. 



Faking a Distribution



Faking a Probability Distribution

Faking a probability distribution…

> Wrong shape 

> Too close to expected value (especially replicated) 

> Too far from expected value 

> Replications too good to be true



e.g., Gegor Mendel’s Sweet Peas

Postulated that self fertilization of hybrid yellow-seeded sweet peas 
would yield offspring with :

> 0.75 chance yellow-seeded 

> 0.25 chance green seeded.

In 1865, reported results of 8023 experiments: 

> 0.7505 yellow-seeded 

> 0.2495 green-seeded. 

Using the probability techniques we’ve learned, probability of 
observations as close to expected value as he reported is minute…

https://www.benchling.com/blog/gregor-mendel-villain-or-victim



In this case, his conclusions were correct

But in other cases, they aren’t always! 

> Fabricated paper linking vaccines to autism

>  Fabricated data in a paper about honesty…

https://www.benchling.com/blog/gregor-mendel-villain-or-victim

http://en.wikipedia.org/wiki/Andrew_Wakefield
https://www.npr.org/2023/07/28/1190663435/did-an-honesty-researcher-fabricate-data


Benford’s Law

In many real-world datasets, the leading 
digit is likely to be small. 

To be precise, a set of numbers is said to 
fulfill Benford’s law if the leading digit 
𝑑 ∈ {1,2, … , 9} occurs with probability 
ℙ 𝑑 = log10 𝑑 + 1 − log10(𝑑) 

https://commons.wikimedia.org/w/index.php?curid=4509760

This can be used to detect fraudulent datasets



Benford’s Law

In many real-world datasets, the leading 
digit is likely to be small. 

To be precise, a set of numbers is said to 
fulfill Benford’s law if the leading digit 
𝑑 ∈ {1,2, … , 9} occurs with probability 
ℙ 𝑑 = log10 𝑑 + 1 − log10(𝑑) 

https://commons.wikimedia.org/w/index.php?curid=4509760

> Detecting fraud in financial documents (see Wesley Rhodes)
> Bogus retweets, bot networks of followers 
> Greece manipulating macroeconomic data to join the Eurozone 
> Vote-rigging in Iran’s 2009 presidential election



Takeaways

If you want to make fake data, now you know what to look out for….

> Don’t make up data or statistics. (Obviously, but also because it’s 
pretty easy to catch you). 

> More importantly, know that you can look at data and figure out 
whether to look more closely at it or not



p-Hacking



Hypothesis Testing

We are researching jelly beans and whether they cause acne in 
teenagers. 

The average teen has amount of acne with mean 𝜇 and variance 𝜎2

𝐻0 (null hypothesis): Jelly beans have no effect on acne 
(i.e., mean acne for someone who eats jelly beans =  𝜇) 

𝐻1 (alternative hypothesis): Jelly beans increase acne 
(i.e., mean acne for someone who eats jelly beans > 𝜇)

Goal: provide enough evidence that we can reject the null hypothesis



Hypothesis Testing

> Choose a significance level, say 0.05

> Observe 100 jelly bean eating teenagers, measure acne. 
   Sample mean observed: 𝑥

> p-value: If null hypothesis is true, what is the probability of observing the 

amount of acne we saw? (i.e., the red region): 𝑝 = ℙ 𝑋 ≥ 𝑥 = 0.0162

   If 𝑝 < 0.05, reject 𝐻0 at the 0.05 significance level 
   (i.e. strong statistical evidence jelly beans cause an increase in acne).

   If 𝑝 > 0.05, accept 𝐻0 at the 0.05 significance level 
   (i.e. it’s possible this observation was just by chance, not enough info to reject).

Goal: provide enough evidence that we can reject the null hypothesis





p-Hacking

𝑝 < 0.05: 5% chance of seeing this much acne if jelly beans don’t cause 
acne

But what if I repeat similar experiments 20 times? 

The probability at least one of those trials will have p value < 0.05 is

1 − ℙ all trials have 𝑝 > 0.05 = 1 − 0.9520 ≈ 0.65

 
In other words 64% of the time one of these tests will be significant. 
So, this result of having value of p > 0.05 for the green jelly beans was 
most likely random chance! 



p-Hacking

P-hacking: Performing a hypothesis test multiple times to get at least 
one statistically significant result…

And…(the particularly evil thing)…not reporting the 19 insignificant tests!



p-Hacking

> Don’t p-hack.

> Know that p-hacking is very prevalent in industry. 

> Leads to better headlines. Publication bias. 

Science is human-motivated, sometimes. Maybe most of the time. 



How (not to) lie with statistics

Often, the problem is not that a statistic is incorrect. 

> Context matters. 

> Units matter. 

> Relative numbers matter. 

> Research: choose what to study and how to study it 

Truths can compete: there may be multiple interpretations of facts.



How (not to) lie with statistics

1. Determine if the samples are random and representative. 

2. Ask for a confidence interval. 

3. Be dubious. Be extremely dubious. 

4. Don’t make up statistics. You’ll get caught. 

5. Be wary of p-hacking (and don’t do it yourself)! 

6. Be careful about seeing patterns where there are none. 

7. Correlation does not imply causation. 

8. Be careful with interpreting conditional probabilities. Intuition 
sometimes doesn’t work here! 

9. Be wary of assuming things are independent that aren’t independent.
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