
More applications!
More “bandits”, Randomized Algorithms, etc.

CSE 312 24Su
Lecture 23

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Logistics

> I lied to you…one more “concept check”, please do course evals! 
   But it won’t be treated as a regular concept check, it’s one extra credit free point! 

> Ed post about makeup opportunity for midterm this weekend

> If you requested a makeup exam, you should have received an email
   If there are other things that come up, please reach out as soon as possible



The Problem

There are 𝐾 slot machines (“bandits” with “arms”).
“Bandits” because they steal your money

You pull arms 𝑇 times, where the arm you pull at time 𝑡 (arm pulled at 
time t is 𝑎𝑡 ∈ {1, … , 𝐾}) will return a random reward to you



The Problem

Your goal? Win as much money as possible! That is, maximize your 
total expected reward after T pulls of an arm of the K slot machines.

Question: How do you know which arm to pull (based on information 
you have – the past) to achieve your goal?

Assumptions: 

1. Rewards from each arm are independent. 

2. The reward distribution of an arm does not change over time.



Our Problem (summarized)

There are 𝑘 “arms”.  We get some reward when we pull the arm, but 

we don’t know the distribution with which the rewards are given. 

Each time we pull an arm, we can observe the reward we get.

Our goal: Derive a strategy for picking which arm to pull to maximize 

the total reward based on observations from your previous pulls. 



Before we go on…why is this important?
Lot’s of problems (reinforcement learning) can be phrased as a bandit problem! 

A/B Testing: Experiment with releasing a new feature, or test ads to maximize click rate. 

Arms: feature(s)/ad(s) to test                         Maximize: total ratings/click rate

Clinical Trials: 𝐾 treatment options. For each patient, give treatment and observe results. 

Arms: different possible treatments              Maximize: number of patients healed

Very real life: For each meal, you choose food, and track your happiness after eating.

Arms: possible food options                          Maximize: total/average happiness

Recommendations: 𝐾 movies options. Recommend each person a movie and observe. 

Arms: available movies                                  Maximize: clicks/rating recommendations

Networks: Adaptive routings for picking best route for each pieces of data. 

Arms: available routes                                   Maximize: transmission speed



Why is this a challenging problem?

There’s a tradeoff between… 

Exploitation (act accordingly to what you know is going to work) 
Pulling arms that we know are “good” based on reward history. 

Exploration (explore other options that might increase reward)
Pulling other arms in case they could be “good” or “better”.

Regret: The difference between the optimal, best possible total 

(expected) reward and the actual reward from our choices of T pulls



Simplification for the problem

In this case, let’s say that each “arm” rewards either $1, $10, or $100.  

We don’t know what the probabilities are though…so the PMF for the 
reward of arm 𝑖 is:

𝑝𝐴𝑖
𝑘 = ቐ

1 − 𝜃1 − 𝜃2 𝑘 = 1
𝜃1 𝑘 = 10
𝜃2 k = 100

Again, our goal is to find a strategy for picking an arm to pull that will 
maximize the total reward over the T pulls. 



Strategy 1: Naïve, Greedy Approach



Strategy 1: Naïve, Greedy Approach

1. Explore. Pull each arm 𝑀 times and record the reward from each

Based on data for each, estimate the parameters 𝜃1 and 𝜃2 for each arm

 2. Exploit. Pick arm with highest estimated expected value and only use 
that arm for the remaining pulls. 

1 1 2 2 3 3 2 2 2 2 2

1. Explore (here, there are 3 arms, and 𝑀 = 2) 2. Exploit



Strategy 1: Naïve, Greedy Approach

1. Explore. Pull each arm 𝑀 times and record the reward from each

Based on data for each, estimate the parameters 𝜃1 and 𝜃2 for each arm
How do we do this…..Maximum Likelihood Estimation!

 2. Exploit. Pick arm with highest estimated expected value and only use 
that arm for the remaining pulls. 

1 1 2 2 3 3 2 2 2 2 2

1. Explore (here, there are 3 arms, and 𝑀 = 2) 2. Exploit



Strategy 1: Naïve, Greedy Approach

Pull arm 1 35 times and record the reward from each.

We see rewards 𝑥1, 𝑥2, … , 𝑥35. Out of these, we get $1 5 times, $10 10 
times and $100 20 times.  What is the MLE for 𝜃1 and 𝜃2 for arm 1?

1. Likelihood Function

2. Log-likelihood Function

3. Derivative(s) of Log-likelihood Function

𝑝𝐴1
𝑘 = ቐ

1 − 𝜃1 − 𝜃2 𝑘 = 1
𝜃1 𝑘 = 10
𝜃2 k = 100



….

4. Set the derivative(s) to 0 and solve for MLE(s)

5. Second derivative Test

> Next step would be to repeat this process and get estimates all arms

> Use the estimates to compute the expected reward from each 

> Pick the arm with highest expected reward for the remaining pulls



Strategy 1: Naïve, Greedy Approach

Pull arm 1 35 times and record the reward from each.

We see rewards 𝑥1, 𝑥2, … , 𝑥35. Out of these, we get $1 5 times, $10 10 times 
and $100 20 times.  What is the MLE for 𝜃1 and 𝜃2 for arm 1?

෢𝜃1 =
10

35
, ෢𝜃2 =

20

35

How good is this estimator? Is it biased? 

1. Write a generalized form of the estimator

Let 𝑋𝑖~Ber(𝜃1) and 𝑌𝑖~Ber(𝜃2) --> ෢𝜃1 =
σ𝑖=1

35 𝑋𝑖

35
, ෡𝜃𝑖 =

σ𝑖=1
35 𝑌𝑖

35

2. Check if it’s unbiased

𝔼 ෢𝜃1 = 𝔼
σ𝑖=1

35 𝑋𝑖

35
=

σ𝑖=1
35 𝔼[𝑋𝑖]

35
= 𝜃1    𝔼 ෢𝜃2 = 𝔼

σ𝑖=1
35 𝑌𝑖

35
=

σ𝑖=1
35 𝔼[𝑌𝑖]

35
= 𝜃2 

𝑝𝐴𝑖
𝑘 = ቐ

1 − 𝜃1 − 𝜃2 𝑘 = 1
𝜃1 𝑘 = 10
𝜃2 k = 100



Problems with this approach 

We may not get an accurate idea from our first 𝑀 pulls of each arm 

> If we choose the wrong best arm, we’d regret it for the rest of time!

> If we increase M, we are spending more time on sub-optimal arms

Problem: We did all exploration, and then all exploitation. 

 Why don’t we blend the two a bit more?



Strategy 2: Epsilon-Greedy



Strategy 2: Epsilon Greedy

1. Explore. Pull each arm 𝑀 times and record the reward from each 
(same as before)

2. Exploit (with a mix of exploration!). With a small probability of 𝜖, try a 
random other arm. Otherwise calculate “best arm” Based on data for 
each, estimate the parameters 𝜃1 and 𝜃2 for each arm and pick best arm 
with highest estimated expected value. 

Better!

 > continuously updates estimated expected reward when it is pulled

 > explores with some probability 𝜀 which allows you to choose how 

to balance exploration and exploitation.



Still some problems!

Is uniform exploration the optimal policy? 
Is a higher estimate always a better choice?

We have our estimates ෢𝜃1 and ෢𝜃2 for each arm that we use to find the 
expected reward for each arm. As we see more data, we can update 
these estimates. 

But, for example…

> After 300 samples from arm 1, ෢𝜃2 = 0.3

> After 3 samples from arm 2, ෢𝜃2 = 0.2

are very different! In this case, arm 2 still has a potential to have a much 
higher true probability of getting $100, but with arm 1, it’s less likely

We don’t want to explore these equally! 



Strategy 3: Upper Confidence Bound
Explore arms that have a higher potential of a better expectation



Confidence Interval for Our Estimates

Instead of picking the arm with the highest expected value, pick the arm 
with the highest potential for expected value? 

How to calculate “potential”? Use a confidence interval! 
For each of the estimated parameters, what range can we be 95% sure the true 
parameter lies in? 

E.g. for arm 1, ෢𝜃1 = 0.2 --> 𝜃1 ∈ 0.2 − 0.15. , 0.2 + 0.15 = 0.05,0.35
                      ෢𝜃2 = 0.3 --> 𝜃2 ∈ 0.3 − 0.1, 0.3 + 0.1 = [0.2,0.4] 

On the next slide, we’re going to just look at the estimate for one of the 

parameters, 𝜃2, but ideally, we would also look at the other parameter, and 

use it to estimate the expected value 1 − ෢𝜃1 − ෢𝜃2 + 10 ⋅ ෢𝜃1 + (100 ⋅ ෢𝜃2)



Confidence Interval for Our Estimates

For an estimate ෢θ2 on arm 𝑖 after seeing 35 samples, what is the smallest 

value of 𝑎 such that the distance between the true θ2 and the estimate ​ ෢θ2 is 

at most 𝑎 with at least 95% confidence?

 Translating to math notation….

ℙ 𝜃2 − 𝑎 ≤ ෢𝜃2 ≤ 𝜃2 + 𝑎 ≥ 0.95

And what exactly is ෢𝜃2 again? 

෢𝜃2 =
σ𝑖=1

35 𝑌𝑖

35
= σ𝑖=1

35 𝑌𝑖

35
 , where 𝑌𝑖~Ber(𝜃2) 

^ is a sum of i.i.d RVs! So, what can we use to solve for 𝑎?



Outline of CLT steps

1. Setup the problem (e.g., 𝑋 = σ𝑖=1
𝑛 𝑋𝑖 , 𝑋𝑖 are i.i.d., and we want ℙ(𝑋 ≤ 𝑘))

   Write event you are interested in, in terms of sum of random variables.

     Apply continuity correction here if RVs are discrete.

2. Apply CLT (e.g., approx 𝑋 as 𝑌~𝑁(𝑛𝜇, 𝑛𝜎2) -> ℙ 𝑋 ≤ 𝑘 ≈ ℙ 𝑌 ≤ 𝑘
    Approximate sum of RVs as normal with appropriate mean and variance

from here, we’re working with a normal distribution, which we’ve worked with before!

3. Compute probability approximation using Phi table

     > Standardize  (𝑍 =
𝑁−𝜇

𝜎
) -> ℙ 𝑌 ≤ 𝑘 = ℙ

𝑌−𝜇

𝜎
≤

𝑘−𝜇

𝜎
= ℙ 𝑍 ≤

𝑘−𝜇

𝜎

     > Write in terms of 𝛷 𝑧 =  ℙ(Z ≤ 𝑧)

     > Look up in table



Confidence Interval for Our Estimates

We have this MLE estimate: ෢𝜃2 =
σ𝑖=1

35 𝑌𝑖

35
= σ𝑖=1

35 𝑌𝑖

35
 , where 𝑌𝑖~Ber(𝜃2) 

What is the value of a such that: ℙ θ2 − a ≤ ෢θ2 ≤ θ2 + a ≥ 0.95

1. Setup the problem

2. Apply CLT



3. Compute probability approximation using Phi table



Confidence Interval for Our Estimates

We have this MLE estimate: ෢𝜃2 =
σ𝑖=1

35 𝑌𝑖

35
= σ𝑖=1

35 𝑌𝑖

35
 , where 𝑌𝑖~Ber(𝜃2) 

What is the value of a such that: ℙ θ2 − a ≤ ෢θ2 ≤ θ2 + a ≥ 0.95

1. Setup the problem

2. Apply CLT



Handling 𝜃2 1 − 𝜃2

Justification 1: If we make a mistake, we want it to be making 𝑛 bigger. 
(since we’re trying to say “take 𝑛 at least this big, and you’ll be safe”).

The bigger the standard deviation, the bigger 𝑛 will need to be to 
control it. So assume the biggest possible standard deviation.

Justification 2:

As 𝜃2 1 − 𝜃2  gets bigger, the interval gets smaller (it’s in the 
denominator), so assuming the biggest value of 𝜃2 1 − 𝜃2  gives us 
the most restricted interval. So no matter what the true interval is we 
have a subset of it. And if our probability is at least .95 then the true 
probability is at least .95.

What’s the maximum of 𝜃2 1 − 𝜃2 ?



Worst value of 𝑝

Calculus time! 

Set 
𝑑

𝑑𝑝
𝑝 − 𝑝2 = 0

1

𝑝−𝑝2
1 − 2𝑝 = 0

1 − 2𝑝 = 0 → 𝑝 = 1/2

Second derivative test will 
confirm 𝑝 =

1

2
 is a maximizer

Or just plot it.

1

2
1 −

1

2
= 1/4.



Side note: A similar process can be used when we’re trying to 

figure out things like how many people do we need to poll to be 

confident in our result when we know NOTHING about the true 

mean or variance of the population’s votes!





Upper Confidence Bound

Our strategy now is: 

> First sample K of each arm to get some initial data

> Now, for every choice, we will use the previous data to figure out 
confidence intervals for each arm, use this to get ranges for the 
potential expectations of each arm, and pick the arm with the highest 
upper bound



Upper Confidence Bound

More frequent pulls from an arm --> smaller upper confidence bound
After seeing more observations, the variance of distribution decreases

Less frequent pulls from an arm --> larger upper confidence bound
After not seeing many observations, more variation is still possible



Strategy 4: Thompson Sampling
See Alex Tsun’s textbook for details about this ☺ 



Muti-Armed Bandits aren’t perfect

> They don’t personalize! 
    they only find overall “winners”, but sometimes, different customers need 
    different things. There are other external factors that affect what the best choice is

> When there are too many arms, MABs don’t work as fast and as well
    e.g., if the arms are the time of day to send an email, if you find that if you send 
    an email at 3pm, the customer buys the product, that tells you that 2pm and 
    4pm are also more likely to be better times 

Contextual Bandits are the next step! If you’re curious, here are some great 
resources for learning about this. 
article, another article, another another article

If you like these topics, this is also the basic for reinforcement learning

https://czzgrace.medium.com/maximum-likelihood-estimation-in-ab-testing-4b4c0a6c853b#:~:text=In%20the%20context%20of%20an,determine%20the%20overall%20test%20result.
https://towardsdatascience.com/contextual-bandits-and-reinforcement-learning-6bdfeaece72a
https://hackernoon.com/contextual-multi-armed-bandit-problems-in-reinforcement-learning


Tail Bounds In The Wild



Tail Bounds – Summary 

• Markov’s inequality - ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]

𝑡
•  Use if 𝑋 is non-negative and we know the expectation

•  Useful when we don’t know much about 𝑋

• Chebyshev’s inequality - ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var t

𝑡2

•  Use if we know the expectation and variance of 𝑋
•  Gives better bounds with small variances

• Chernoff Bound

•  Use if 𝑋 is a sum of independent Bernoulli random variables 

•  Gives a very good bound usually, and is especially helpful when 𝑋 is binomial 
 and we can’t easily computationally compute some summations/probability

• Union Bound - ℙ 𝐴 ∪ 𝐵 ≤ ℙ 𝐴 + ℙ(𝐵) (technically not a tail bound…)
•Use if we don’t have enough information to find the union (e.g,. ways for at least of __ to 
occur, for A, or B, or C, or … to occur)

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3



Algorithm Analysis

https://xkcd.com/1667



Randomized Algorithms

Randomized algorithm use randomness in the computation

Many algorithms incorporate some level of randomness

We can use the probabilistic techniques we’ve learned about in this 
class to analyze these algorithms! 

Today…using tail bounds for analysis in randomized algorithms



Two Common Types

Las Vegas Algorithms: We will keep running the algorithm (randomly 
looking for the solution) till we get a good solution.
What is a bound on the running time for this? 

Monte Carlo Algorithms: We will stop at some fixed number of attempts 
regardless of whether a good solution was found. 
What is the probability a correct solution was found? 



Graphs

A pair of 

> Set of vertices/nodes

> Set of edges between the vertices

• Weighted graphs have weighted edges

• Directed graphs have edges that either 

go from A to B, or B to A



Maximum Cut Problem

The problem: partition the nodes of a graph into two sets A and B such 
that the number of edges between the sets is maximized
real world examples: binary classification

The cut is the set of edges between 
the nodes in the two sets 
(goal: maximize the number of edges in the cut)



Maximum Cut Problem

The problem: partition the nodes of a graph into two sets A and B such 
that the number of edges between the sets is maximized
real world examples: binary classification

The cut is the set of edges between 
the nodes in the two sets 
(goal: maximize the number of edges in the cut)



Maximum Cut Problem

The problem: partition the nodes of a graph into two sets A and B such 
that the number of edges between the sets is maximized
real world examples: binary classification

The cut is the set of edges between 
the nodes in the two sets 
(goal: maximize the number of edges in the cut)

Simple randomized algorithm: 

Each node goes to A or B with probability 1/2



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X  

2. Apply Markov’s Ineqality. 

ℙ 𝑋 ≥ 𝑘 ≤
𝔼[𝑋]

𝑘



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X . 𝑋𝑖 = 1 of 𝑖’th edge is in the cut. ℙ 𝑋𝑖 = 1 =
1

2

   𝑋 = σ𝑖=1
𝑛 𝑋𝑖 --> 𝔼 𝑋 = σ𝑖=1

𝑛 𝔼 𝑋𝑖 =
𝑛

2

2. Apply Markov’s Ineqality. ℙ 𝑋 ≥ 𝑛/3 ≤
𝑛/2

𝑛/3
 --> taking complement..

ℙ 𝑋 ≤ 𝑛/3 = 1 − ℙ 𝑋 ≥
𝑛

3
≥ 1 − 3/2 = −0.5          a trivial bound

ℙ 𝑋 ≥ 𝑘 ≤
𝔼[𝑋]

𝑘



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X . 𝑋𝑖 = 1 of 𝑖’th edge is in the cut. ℙ 𝑋𝑖 = 1 =
1

2

   𝑋 = σ𝑖=1
𝑛 𝑋𝑖 --> 𝔼 𝑋 = σ𝑖=1

𝑛 𝔼 𝑋𝑖 =
𝑛

2

2. Apply Markov’s Ineqality. 

ℙ 𝑋 ≤ 𝑛/3 = ℙ 𝑛 − 𝑋 ≥ 𝑛 − 𝑛/3 ≤
𝔼 𝑛−𝑋

𝑛−
𝑛

3

=
𝑛−𝑛/2

𝑛−𝑛/3
=

𝑛/2

2𝑛/3
 = 3/4 --> a trick!

You don’t need to know 
this trick in this class



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

see 3.2 here for explanation

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Chebyshev’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X . 𝔼 𝑋 =
𝑛

2
   2. Find Var(𝑋). Var 𝑋 =

𝑛

4
 (see 3.2 here for explanation)

2. Apply Chebyshev’s Ineqality. 
ℙ 𝑋 ≤ 𝑛/3 = 

ℙ |𝑋 − 𝔼[𝑋]| ≥ 𝑘 ≤
Var 𝑋

𝑘2

https://home.ttic.edu/~madhurt/courses/toolkit2013/lecture3.pdf


Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?

𝑛 is number of edges, X is number of edges in cut

Use Chebyshev’s inequality to bound ℙ(𝑋 ≤ 𝑛/3) 

1. Find 𝔼 X . 𝔼 𝑋 =
𝑛

2
      2. Find Var(𝑋). Var 𝑋 =

𝑛

4
 

2. Apply Chebyshev’s Ineqality. 

ℙ 𝑋 ≤ 𝑛/3 = ℙ 𝑋 −
𝑛

2
≤

𝑛

3
−

𝑛

2
≤ ℙ 𝑋 −

𝑛

2
≤ −

𝑛

6
+ ℙ 𝑋 −

𝑛

2
≥

𝑛

6
 

                         ≤ ℙ 𝑋 −
𝑛

2
≥

𝑛

6
≤

𝑛/4

𝑛/6 2  =
9

𝑛

ℙ |𝑋 − 𝔼[𝑋]| ≥ 𝑘 ≤
Var 𝑋

𝑘2



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability ½

Better, Las Vegas algorithm: 

Keep doing this till there is a large cut found (i.e., 𝑋 ≥ 𝑛/3)

What is the probability that in the first 20 trials, we will have succeeded? 



Maximum Cut Problem

The problem: partition the vertices of a graph into two sets 
such that the number of edges between the sets is maximized

Simple algorithm: 
Each node goes to A or B with probability ½

Better, Las Vegas algorithm: 

Keep doing this till there is a large cut found (i.e., 𝑋 ≥ 𝑛/3)

What is the probability that in the first 20 trials, we will have succeeded? 

Let 𝑋 be the number of trials is takes. 𝑋 ~ Geo 𝑝 ≤
9

𝑛

So, ℙ 𝑋 ≤ 20 ≤ 1 − 1 −
9

𝑛

20



Graph Coloring Problem

The problem: color each node red, blue, or green, BUT minimize nodes 
with the same color sharing an edge (i.e., max. edges between distinct) 
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation
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Graph Coloring Problem

The problem: color each node red, blue, or green, BUT minimize nodes 
with the same color sharing an edge (i.e., max. edges between distinct) 
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Graph Coloring Problem

The problem: color each node red, blue, or green, BUT minimize nodes 
with the same color sharing an edge (i.e., max. edges between distinct) 
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation

Simple algorithm: Randomly pick a color for each node

Probability of edge 𝑒 sharing a color (miscoloring) is 
1

3
, so…

𝔼 𝑆𝑒 =
1

3
 where 𝑆𝑒 is whether edge is miscolored

𝑆 (num. of miscolored edges): 𝑆 = σ𝑖
𝑛 𝑆𝑒-->𝔼 𝑆 =

𝑛

3

So, by Markov’s inequality, 

ℙ 𝑆 ≥ 1.1 ⋅
𝑛

3
≤

𝑛/3

1.1⋅𝑛/3
 =

1

1.1
≈ 0.91

The probability of the algorithm miscoloring more than a third edges has a high upper bound  



Graph Coloring Problem

The problem: color each node red, blue, or green, BUT minimize nodes 
with the same color sharing an edge (i.e., max. edges between distinct) 
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation

Simple algorithm: Randomly pick a color for each node

𝑆 (num. of miscolored edges): 𝑆 = σ𝑖
𝑛 𝑆𝑒-->𝔼 𝑆 =

𝑛

3

So, by Markov’s inequality, 

ℙ 𝑆 ≥ 1.1 ⋅
𝑛

3
≤

𝑛/3

1.1⋅𝑛/3
 =

1

1.1
≈ 0.91

We can use a Monte Carlo algorithm! 

Keep repeating the algorithm 𝑡 times. 

Probability you fail to find a good coloring is at most 
1

1.1

𝑡

probability is very low with high values of 𝑡



If you like this kind of stuff...

• CSE 421 covers algorithms (like min cut, graph color, and more!) 

• CSE 431 covers the theory behind this algorithms (which includes 
analysis of randomize algorithms!) 



Differential Privacy



Privacy Preservation

A real-world example (adapted from The Ethical Algorithm by Kearns and 
Roth; based on protocol by Warner [1965]).

And gives a sense of how randomness is actually used to protect privacy.



Privacy Preservation with Randomness

You’re working with a social scientist. They want to get accurate data on 
the rate at which people cheat on their romantic partners. 

We know about polling accuracy! 

> Use CLT or a tail-bound to estimate the needed number 𝑛 get a 
guaranteed good estimate, right?

> Do a poll, call up a random sample of adults and ask them “have you 
ever cheated on your romantic partner?”

You do that, and somehow, no one says they cheated. I wonder why…



What’s the problem?

People lie. 

Or they might be concerned about you keeping this data.

Databases can be leaked (or infiltrated. Or subpoenaed).

You don’t want to hold this data, and the people you’re calling 
don’t want you to hold this data.



Doing It Better!

You don’t need to know who was cheating. Just how many people were. 

Here’s a protocol:

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’

We have two concerns with this: 

> Will it now be private? 

> Will we be able to make accurate estimates using this data? 



Will it be private?

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me ‘heads’

If the coin is tails and you have not ever cheated, please tell me ‘tails’

If you are someone who has cheated, and you report heads can that be 
used against you? Not substantially – just say “no the coin came up 
heads!”

You discover your partner said heads, what’s the probability that they 
cheated? 



Will it be private?

If you are someone who has cheated on your spouse, and you report 
heads can that be used against you? Not substantially – just say “no the 
coin came up heads!”

ℙ 𝐶 𝐻 =
ℙ(𝐻|𝐶)⋅ℙ(𝐶)

ℙ(𝐻)
 =

1⋅ℙ(𝐶)
1

2
ℙ(𝐶) +1⋅ℙ(𝐶)

Is this a substantial change?

No. For real world values (~15%) of ℙ(𝐶), the probability estimate would 
increase (to ~26%). But that isn’t too damaging. 



But will it be accurate?

But we’ve lost our data haven’t we? People answered a different question. 
Can we still estimate how many people cheated?

Suppose you poll 𝑛 people, and let 𝑋 be the number of people who said 
“heads” We’ll find an estimate 𝑌 of the number of people who cheated in the 
sample, and let 𝑝 be the true probability of cheating in the population.
 What should 𝑌 be? Can we draw a margin of error around 𝑌?

ℙ 𝑋𝑖 = 1 =
1

2
+

1

2
⋅ 𝑝

𝔼 𝑋 =
𝑛

2
+

1

2
𝔼 𝑌

We’ll define 𝑌 to be: 𝑌 = 2 𝑋 −
𝑛

2
. 

This is a definition, based on how the 𝔼[𝑌] should relate to the 𝔼[𝑋].



But will it be accurate?

𝔼 𝑋 =
𝑛

2
+

1

2
𝔼[𝑌]

𝑌 = 2 𝑋 −
𝑛

2

Var 𝑋 = Var σ𝑋𝑖 = σVar 𝑋𝑖

Var 𝑋𝑖 ? It’s an indicator with parameter 𝑝 + 1 − 𝑝 ⋅
1

2
=

1

2
+

𝑝

2

So Var 𝑋𝑖 =
1

2
+

𝑝

2

1

2
−

𝑝

2

Var 𝑌 = 4Var 𝑋 = 4𝑛Var 𝑋𝑖 = 4𝑛
1

2
+

𝑝

2

1

2
−

𝑝

2
≤

4𝑛

4
= 𝑛

The variance is 4 times as much as it would have been for a non-anonymous 
poll.



Can we use Chernoff?

What happens with n = 1000 people?

What range will we be within at least 95% of the time?

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = σ𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
 and ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −

𝛿2𝜇

2

(Multiplicative) Chernoff Bound



 Can’t bound 𝛿 without bounding 𝑝

The right tail is the looser bound, so ensuring the right tail is less than 
2.5% gives us the needed guarantee.

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
= exp −

𝛿21000𝑝

3
≤ .025

−
𝛿21000𝑝

3
≤ ln(.025)

−𝛿2≤
3⋅ln .025

1000𝑝

𝛿 ≥
−3ln(.025)

1000𝑝

As 𝑝 → 0, 𝛿 → ∞ – we’re not actually making a claim anymore.



A different inequality

If we try to use Chernoff, we’ll hit a frustrating block.

Since 𝜇 depends on 𝑝, 𝑝 appears in the formula for 𝛿. And we wouldn’t 
get an absolute guarantee unless we could plug in a 𝑝.

And it’ll turn out that as 𝑝 → 0 that 𝛿 → ∞ so we don’t say anything 
then.

Luckily, there’s always another bound…



Hoeffding’s Inequality

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. Why?

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent RVs, each with range [0,1]. 
Let ത𝑋 = σ𝑋𝑖/𝑛,  and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡2

Hoeffding’s Inequality



𝑌 = 2 𝑋 −
𝑛

2
 or 𝑋 =

𝑌+𝑛

2

𝑋 − 𝔼 𝑋

=
𝑌+𝑛

2
− 𝔼

𝑌+𝑛

2

=
𝑌+𝑛

2
− 𝔼

𝑌

2
−

𝑛

2

=
𝑌

2
− 𝔼

𝑌

2

=
1

2
𝑌 − 𝔼 𝑌  

So 𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if 
1

2
𝑌 − 𝔼 𝑌 ≥ 𝑡 iff 𝑌 − 𝔼 𝑌 ≥ 2𝑡.



Hoeffding’s Inequality

How close will we be with n=1000 with probability at least .95?

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent RVs, each with range [0,1]. 
Let ത𝑋 = σ𝑋𝑖/𝑛,  and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡2

Hoeffding’s Inequality



Margin of Error

ℙ 𝑌 − 𝔼 𝑌 ≥ 𝑡 = ℙ 𝑋 − 𝔼 𝑋 ≥ 𝑡/2 ≤ 2 exp −2𝑛𝑡2 ≤ .05

For 𝑛 = 1000, we get:

2 exp −2𝑛
𝑡

2

2
≤ .05 ⇒ −

2000𝑡2

4
≤ ln .025 ⇒ 𝑡 ≤ .086. 

ℙ 𝑌 − 𝔼 𝑌 ≥ .086 ≤ .05

So our margin of error is about 8.6%.

To get a margin-of-error of 5% need 2 exp −2𝑛
.05

2

2
≤ .05

𝑛 ≥ 2952



How much do we lose?

We lose a factor of two in the length of the margin (equivalently, we’d 
need to talk to 4 times as many people to have the same confidence.

You can also control this tradeoff. 

Want more accuracy? Make it roll a die: report 1 if cheated (truth o/w)

Want more security? Make it Bernoulli with probability 𝑝 ≫
1

2
 or cheated 

have the same report (e.g. report “die roll 1 [and didn’t cheat]” or “die 
roll 2-6 [or did cheat]”



In The Real World

Injecting random ness to preserve privacy is a real thing.

Instead of having everyone flip a coin, “random noise” can be inserted 
after all the data has been collected.

Differential privacy is being used to protect the 2020 Census data. 

The overall count of people in each state is exact (well, exactly the data 
they collected). But the data per block or per city will be randomized to 
protect against . 

This video nicely explains what’s involved. Notice that the accuracy 
guarantees come in the same “inside-margin-of-error-with-probability” 
guarantees we’ve been giving for our randomness (just much stronger).

https://www.youtube.com/watch?v=pT19VwBAqKA
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