
More applications!
More “bandits”, Randomized Algorithms, etc.

CSE 312 24Su
Lecture 23

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments!

Logistics
> I lied to you…one more “concept check”, please do course evals!
 But it won’t be treated as a regular concept check, it’s one extra credit free point!

> Ed post about makeup opportunity for midterm this weekend
> If you requested a makeup exam, you should have received an email
 If there are other things that come up, please reach out as soon as possible

The Problem
There are 𝐾 slot machines (“bandits” with “arms”).
“Bandits” because they steal your money

You pull arms 𝑇 times, where the arm you pull at time 𝑡 (arm pulled at
time t is 𝑎௧ ∈ {1, … , 𝐾}) will return a random reward to you

Mobile User

The Problem
Your goal? Win as much money as possible! That is, maximize your
total expected reward after T pulls of an arm of the K slot machines.
Question: How do you know which arm to pull (based on information
you have – the past) to achieve your goal?

Assumptions:
1. Rewards from each arm are independent.
2. The reward distribution of an arm does not change over time.

Mobile User

Our Problem (summarized)

There are 𝑘 “arms”. We get some reward when we pull the arm, but
we don’t know the distribution with which the rewards are given.
Each time we pull an arm, we can observe the reward we get.

Our goal: Derive a strategy for picking which arm to pull to maximize
the total reward based on observations from your previous pulls.

Mobile User

Before we go on…why is this important?
Lot’s of problems (reinforcement learning) can be phrased as a bandit problem!
A/B Testing: Experiment with releasing a new feature, or test ads to maximize click rate.
Arms: feature(s)/ad(s) to test Maximize: total ratings/click rate

Clinical Trials: 𝐾 treatment options. For each patient, give treatment and observe results.
Arms: different possible treatments Maximize: number of patients healed

Very real life: For each meal, you choose food, and track your happiness after eating.
Arms: possible food options Maximize: total/average happiness

Recommendations: 𝐾 movies options. Recommend each person a movie and observe.
Arms: available movies Maximize: clicks/rating recommendations

Networks: Adaptive routings for picking best route for each pieces of data.
Arms: available routes Maximize: transmission speed

Mobile User

Why is this a challenging problem?
There’s a tradeoff between…
Exploitation (act accordingly to what you know is going to work)
Pulling arms that we know are “good” based on reward history.
Exploration (explore other options that might increase reward)
Pulling other arms in case they could be “good” or “better”.

Regret: The difference between the optimal, best possible total
(expected) reward and the actual reward from our choices of T pulls

Mobile User

Simplification for the problem
In this case, let’s say that each “arm” rewards either $1, $10, or $100.
We don’t know what the probabilities are though…so the PMF for the
reward of arm 𝑖 is:

𝑝 𝑘 = ቐ
1 − 𝜃ଵ − 𝜃ଶ 𝑘 = 1
𝜃ଵ 𝑘 = 10
𝜃ଶ k = 100

Again, our goal is to find a strategy for picking an arm to pull that will
maximize the total reward over the T pulls.

Mobile User

Strategy 1: Naïve, Greedy Approach

Strategy 1: Naïve, Greedy Approach
1. Explore. Pull each arm 𝑀 times and record the reward from each
Based on data for each, estimate the parameters 𝜃ଵ and 𝜃ଶ for each arm
How do we do this…..Maximum Likelihood Estimation!
 2. Exploit. Pick arm with highest estimated expected value and only use
that arm for the remaining pulls.

1 1 2 2 3 3 2 2 2 2 2

1. Explore (here, there are 3 arms, and 𝑀 = 2) 2. Exploit

Mobile User

Strategy 1: Naïve, Greedy Approach
Pull arm 1 35 times and record the reward from each.
We see rewards 𝑥ଵ, 𝑥ଶ, … , 𝑥ଷହ. Out of these, we get $1 5 times, $10 10
times and $100 20 times. What is the MLE for 𝜃ଵ and 𝜃ଶ for arm 1?
1. Likelihood Function

2. Log-likelihood Function

3. Derivative(s) of Log-likelihood Function

𝑝భ 𝑘 = ቐ
1 − 𝜃ଵ − 𝜃ଶ 𝑘 = 1
𝜃ଵ 𝑘 = 10
𝜃ଶ k = 100

Mobile User

….
4. Set the derivative(s) to 0 and solve for MLE(s)

5. Second derivative Test
> Next step would be to repeat this process and get estimates all arms
> Use the estimates to compute the expected reward from each
> Pick the arm with highest expected reward for the remaining pulls

Mobile User

Strategy 1: Naïve, Greedy Approach
Pull arm 1 35 times and record the reward from each.
We see rewards 𝑥ଵ, 𝑥ଶ, … , 𝑥ଷହ. Out of these, we get $1 5 times, $10 10 times
and $100 20 times. What is the MLE for 𝜃ଵ and 𝜃ଶ for arm 1?
𝜃ଵ = ଵ

ଷହ
, 𝜃ଶ = ଶ

ଷହ

How good is this estimator? Is it biased?
1. Write a generalized form of the estimator

Let 𝑋~Ber(𝜃ଵ) and 𝑌~Ber(𝜃ଶ) --> 𝜃ଵ = ∑సభ
యఱ
ଷହ

, 𝜃 = ∑సభ
యఱ
ଷହ

2. Check if it’s unbiased

𝔼 𝜃ଵ = 𝔼 ∑సభ
యఱ
ଷହ

= ∑సభ
యఱ 𝔼[]

ଷହ
= 𝜃ଵ 𝔼 𝜃ଶ = 𝔼 ∑సభ

యఱ
ଷହ

= ∑సభ
యఱ 𝔼[]

ଷହ
= 𝜃ଶ

𝑝 𝑘 = ቐ
1 − 𝜃ଵ − 𝜃ଶ 𝑘 = 1
𝜃ଵ 𝑘 = 10
𝜃ଶ k = 100

Problems with this approach
We may not get an accurate idea from our first 𝑀 pulls of each arm
> If we choose the wrong best arm, we’d regret it for the rest of time!
> If we increase M, we are spending more time on sub-optimal arms

Problem: We did all exploration, and then all exploitation.
 Why don’t we blend the two a bit more?

Mobile User

Strategy 2: Epsilon-Greedy

Strategy 2: Epsilon Greedy
1. Explore. Pull each arm 𝑀 times and record the reward from each
(same as before)
2. Exploit (with a mix of exploration!). With a small probability of 𝜖, try a
random other arm. Otherwise calculate “best arm” Based on data for
each, estimate the parameters 𝜃ଵ and 𝜃ଶ for each arm and pick best arm
with highest estimated expected value.

Better!
 > continuously updates estimated expected reward when it is pulled
 > explores with some probability 𝜀 which allows you to choose how
to balance exploration and exploitation.

Mobile User

Still some problems!
Is uniform exploration the optimal policy?
Is a higher estimate always a better choice?
We have our estimates 𝜃ଵ and 𝜃ଶ for each arm that we use to find the
expected reward for each arm. As we see more data, we can update
these estimates.
But, for example…
> After 300 samples from arm 1, 𝜃ଶ = 0.3
> After 3 samples from arm 2, 𝜃ଶ = 0.2
are very different! In this case, arm 2 still has a potential to have a much
higher true probability of getting $100, but with arm 1, it’s less likely
We don’t want to explore these equally!

Mobile User

Strategy 3: Upper Confidence Bound
Explore arms that have a higher potential of a better expectation

Confidence Interval for Our Estimates
Instead of picking the arm with the highest expected value, pick the arm
with the highest potential for expected value?
How to calculate “potential”? Use a confidence interval!
For each of the estimated parameters, what range can we be 95% sure the true
parameter lies in?
E.g. for arm 1, 𝜃ଵ = 0.2 --> 𝜃ଵ ∈ 0.2 − 0.15. , 0.2 + 0.15 = 0.05,0.35
 𝜃ଶ = 0.3 --> 𝜃ଶ ∈ 0.3 − 0.1, 0.3 + 0.1 = [0.2,0.4]

On the next slide, we’re going to just look at the estimate for one of the
parameters, 𝜃ଶ, but ideally, we would also look at the other parameter, and
use it to estimate the expected value 1 − 𝜃ଵ − 𝜃ଶ + 10 ⋅ 𝜃ଵ + (100 ⋅ 𝜃ଶ)

Mobile User

Confidence Interval for Our Estimates
For an estimate θଶ on arm 𝑖 after seeing 35 samples, what is the smallest
value of 𝑎 such that the distance between the true θଶ and the estimate θଶ is
at most 𝑎 with at least 95% confidence?

 Translating to math notation….
ℙ 𝜃ଶ − 𝑎 ≤ 𝜃ଶ ≤ 𝜃ଶ + 𝑎 ≥ 0.95

And what exactly is 𝜃ଶ again?
𝜃ଶ = ∑సభ

యఱ
ଷହ

= ∑ୀଵ
ଷହ

ଷହ
 , where 𝑌~Ber(𝜃ଶ)

^ is a sum of i.i.d RVs! So, what can we use to solve for 𝑎?

Mobile User

Outline of CLT steps
1. Setup the problem (e.g., 𝑋 = ∑ୀଵ

 𝑋 , 𝑋 are i.i.d., and we want ℙ(𝑋 ≤ 𝑘))
 Write event you are interested in, in terms of sum of random variables.

 Apply continuity correction here if RVs are discrete.

2. Apply CLT (e.g., approx 𝑋 as 𝑌~𝑁(𝑛𝜇, 𝑛𝜎ଶ) -> ℙ 𝑋 ≤ 𝑘 ≈ ℙ 𝑌 ≤ 𝑘
 Approximate sum of RVs as normal with appropriate mean and variance
from here, we’re working with a normal distribution, which we’ve worked with before!
3. Compute probability approximation using Phi table

 > Standardize (𝑍 = ேିఓ
ఙ

) -> ℙ 𝑌 ≤ 𝑘 = ℙ ିఓ
ఙ

≤ ିఓ
ఙ

= ℙ 𝑍 ≤ ିఓ
ఙ

 > Write in terms of 𝛷 𝑧 = ℙ(Z ≤ 𝑧)
 > Look up in table

Confidence Interval for Our Estimates
We have this MLE estimate: 𝜃ଶ = ∑సభ

యఱ
ଷହ

= ∑ୀଵ
ଷହ

ଷହ
 , where 𝑌~Ber(𝜃ଶ)

What is the value of a such that: ℙ θଶ − a ≤ θଶ ≤ θଶ + a ≥ 0.95
1. Setup the problem

2. Apply CLT

Mobile User

3. Compute probability approximation using Phi table

Mobile User

Confidence Interval for Our Estimates
We have this MLE estimate: 𝜃ଶ = ∑సభ

యఱ
ଷହ

= ∑ୀଵ
ଷହ

ଷହ
 , where 𝑌~Ber(𝜃ଶ)

What is the value of a such that: ℙ θଶ − a ≤ θଶ ≤ θଶ + a ≥ 0.95
1. Setup the problem

2. Apply CLT

Handling 𝜃ଶ 1 − 𝜃ଶ

Justification 1: If we make a mistake, we want it to be making 𝑛 bigger.
(since we’re trying to say “take 𝑛 at least this big, and you’ll be safe”).
The bigger the standard deviation, the bigger 𝑛 will need to be to
control it. So assume the biggest possible standard deviation.
Justification 2:
As 𝜃ଶ 1 − 𝜃ଶ gets bigger, the interval gets smaller (it’s in the
denominator), so assuming the biggest value of 𝜃ଶ 1 − 𝜃ଶ gives us
the most restricted interval. So no matter what the true interval is we
have a subset of it. And if our probability is at least .95 then the true
probability is at least .95.
What’s the maximum of 𝜃ଶ 1 − 𝜃ଶ ?

Worst value of 𝑝
Calculus time!
Set ௗ

ௗ
𝑝 − 𝑝ଶ = 0

ଵ
ିమ 1 − 2𝑝 = 0

1 − 2𝑝 = 0 → 𝑝 = 1/2
Second derivative test will
confirm 𝑝 = ଵ

ଶ
 is a maximizer

Or just plot it.
ଵ
ଶ

1 − ଵ
ଶ

= 1/4.

Mobile User

Side note: A similar process can be used when we’re trying to
figure out things like how many people do we need to poll to be
confident in our result when we know NOTHING about the true

mean or variance of the population’s votes!

Mobile User

Mobile User

Upper Confidence Bound
Our strategy now is:
> First sample K of each arm to get some initial data
> Now, for every choice, we will use the previous data to figure out
confidence intervals for each arm, use this to get ranges for the
potential expectations of each arm, and pick the arm with the highest
upper bound

Mobile User

Upper Confidence Bound
More frequent pulls from an arm --> smaller upper confidence bound
After seeing more observations, the variance of distribution decreases
Less frequent pulls from an arm --> larger upper confidence bound
After not seeing many observations, more variation is still possible

Mobile User

Strategy 4: Thompson Sampling
See Alex Tsun’s textbook for details about this

Mobile User

Muti-Armed Bandits aren’t perfect
> They don’t personalize!
 they only find overall “winners”, but sometimes, different customers need
 different things. There are other external factors that affect what the best choice is
> When there are too many arms, MABs don’t work as fast and as well
 e.g., if the arms are the time of day to send an email, if you find that if you send
 an email at 3pm, the customer buys the product, that tells you that 2pm and
 4pm are also more likely to be better times

Contextual Bandits are the next step! If you’re curious, here are some great
resources for learning about I

If you like these topics, this is also the basic for reinforcement learning

Mobile User

Tail Bounds In The Wild

Tail Bounds – Summary
• Markov’s inequality - ℙ 𝑋 ≥ 𝑡 ≤ 𝔼[]

௧
• Use if 𝑋 is non-negative and we know the expectation
• Useful when we don’t know much about 𝑋

• Chebyshev’s inequality - ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤ ୟ୰ ୲
௧మ

• Use if we know the expectation and variance of 𝑋
• Gives better bounds with small variances

• Chernoff Bound
• Use if 𝑋 is a sum of independent Bernoulli random variables
• Gives a very good bound usually, and is especially helpful when 𝑋 is binomial
 and we can’t easily computationally compute some summations/probability

• Union Bound - ℙ 𝐴 ∪ 𝐵 ≤ ℙ 𝐴 + ℙ(𝐵) (technically not a tail bound…)
•Use if we don’t have enough information to find the union (e.g,. ways for at least of __ to
occur, for A, or B, or C, or … to occur)

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒 ିഃమഋ
మ and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒 ିഃమഋ

య

Mobile User

Algorithm Analysis

https://xkcd.com/1667

Randomized Algorithms
Randomized algorithm use randomness in the computation

Many algorithms incorporate some level of randomness
We can use the probabilistic techniques we’ve learned about in this
class to analyze these algorithms!
Today…using tail bounds for analysis in randomized algorithms

Mobile User

Two Common Types
Las Vegas Algorithms: We will keep running the algorithm (randomly
looking for the solution) till we get a good solution.
What is a bound on the running time for this?

Monte Carlo Algorithms: We will stop at some fixed number of attempts
regardless of whether a good solution was found.
What is the probability a correct solution was found?

Mobile User

Graphs
A pair of
> Set of vertices/nodes
> Set of edges between the vertices

• Weighted graphs have weighted edges
• Directed graphs have edges that either

go from A to B, or B to A

Mobile User

Maximum Cut Problem
The problem: partition the nodes of a graph into two sets A and B such
that the number of edges between the sets is maximized
real world examples: binary classification

The cut is the set of edges between
the nodes in the two sets
(goal: maximize the number of edges in the cut)

Mobile User

Maximum Cut Problem
The problem: partition the nodes of a graph into two sets A and B such
that the number of edges between the sets is maximized
real world examples: binary classification

The cut is the set of edges between
the nodes in the two sets
(goal: maximize the number of edges in the cut)

Mobile User

Maximum Cut Problem
The problem: partition the nodes of a graph into two sets A and B such
that the number of edges between the sets is maximized
real world examples: binary classification

The cut is the set of edges between
the nodes in the two sets
(goal: maximize the number of edges in the cut)

Simple randomized algorithm:
Each node goes to A or B with probability 1/2

Mobile User

Maximum Cut Problem
The problem: partition the vertices of a graph into two sets
such that the number of edges between the sets is maximized
Simple algorithm:
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?
𝑛 is number of edges, X is number of edges in cut
Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3)
1. Find 𝔼 X

2. Apply Markov’s Ineqality.

ℙ 𝑋 ≥ 𝑘 ≤
𝔼[𝑋]

𝑘

Mobile User

Maximum Cut Problem
The problem: partition the vertices of a graph into two sets
such that the number of edges between the sets is maximized
Simple algorithm:
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?
𝑛 is number of edges, X is number of edges in cut
Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3)
1. Find 𝔼 X . 𝑋 = 1 of 𝑖’th edge is in the cut. ℙ 𝑋 = 1 = ଵ

ଶ
 𝑋 = ∑ୀଵ

 𝑋 --> 𝔼 𝑋 = ∑ୀଵ
 𝔼 𝑋 =

ଶ

2. Apply Markov’s Ineqality. ℙ 𝑋 ≥ 𝑛/3 ≤ /ଶ
/ଷ

 --> taking complement..
ℙ 𝑋 ≤ 𝑛/3 = 1 − ℙ 𝑋 ≥

ଷ
≥ 1 − 3/2 = −0.5 a trivial bound

ℙ 𝑋 ≥ 𝑘 ≤
𝔼[𝑋]

𝑘

Mobile User

Maximum Cut Problem
The problem: partition the vertices of a graph into two sets
such that the number of edges between the sets is maximized
Simple algorithm:
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?
𝑛 is number of edges, X is number of edges in cut
Use Markov’s inequality to bound ℙ(𝑋 ≤ 𝑛/3)
1. Find 𝔼 X . 𝑋 = 1 of 𝑖’th edge is in the cut. ℙ 𝑋 = 1 = ଵ

ଶ
 𝑋 = ∑ୀଵ

 𝑋 --> 𝔼 𝑋 = ∑ୀଵ
 𝔼 𝑋 =

ଶ
2. Apply Markov’s Ineqality.
ℙ 𝑋 ≤ 𝑛/3 = ℙ 𝑛 − 𝑋 ≥ 𝑛 − 𝑛/3 ≤ 𝔼 ି

ି
య

= ି/ଶ
ି/ଷ

= /ଶ
ଶ/ଷ

 = 3/4 --> a trick!

You don’t need to know
this trick in this class

Mobile User

Maximum Cut Problem
The problem: partition the vertices of a graph into two sets
such that the number of edges between the sets is maximized
Simple algorithm:
Each node goes to A or B with probability 1/2

see 3.2 here for explanation

What’s the probability of a “small” cut?
𝑛 is number of edges, X is number of edges in cut
Use Chebyshev’s inequality to bound ℙ(𝑋 ≤ 𝑛/3)
1. Find 𝔼 X . 𝔼 𝑋 =

ଶ
 2. Find Var(𝑋). Var 𝑋 =

ସ
 (see 3.2 here for explanation)

2. Apply Chebyshev’s Ineqality.
ℙ 𝑋 ≤ 𝑛/3 =

ℙ |𝑋 − 𝔼[𝑋]| ≥ 𝑘 ≤
Var 𝑋

𝑘ଶ

https://home.ttic.edu/~madhurt/courses/toolkit2013/lecture3.pdf
Mobile User

Maximum Cut Problem
The problem: partition the vertices of a graph into two sets
such that the number of edges between the sets is maximized
Simple algorithm:
Each node goes to A or B with probability 1/2

What’s the probability of a “small” cut?
𝑛 is number of edges, X is number of edges in cut
Use Chebyshev’s inequality to bound ℙ(𝑋 ≤ 𝑛/3)
1. Find 𝔼 X . 𝔼 𝑋 =

ଶ
 2. Find Var(𝑋). Var 𝑋 =

ସ

2. Apply Chebyshev’s Ineqality.
ℙ 𝑋 ≤ 𝑛/3 = ℙ 𝑋 −

ଶ
≤

ଷ
−

ଶ
≤ ℙ 𝑋 −

ଶ
≤ −

+ ℙ 𝑋 −

ଶ
≥

 ≤ ℙ 𝑋 −
ଶ

≥

≤ /ସ
/ మ = ଽ

ℙ |𝑋 − 𝔼[𝑋]| ≥ 𝑘 ≤
Var 𝑋

𝑘ଶ

Maximum Cut Problem
The problem: partition the vertices of a graph into two sets
such that the number of edges between the sets is maximized
Simple algorithm:
Each node goes to A or B with probability ½
Better, Las Vegas algorithm:
Keep doing this till there is a large cut found (i.e., 𝑋 ≥ 𝑛/3)

What is the probability that in the first 20 trials, we will have succeeded?

Mobile User

Maximum Cut Problem
The problem: partition the vertices of a graph into two sets
such that the number of edges between the sets is maximized
Simple algorithm:
Each node goes to A or B with probability ½
Better, Las Vegas algorithm:
Keep doing this till there is a large cut found (i.e., 𝑋 ≥ 𝑛/3)

What is the probability that in the first 20 trials, we will have succeeded?
Let 𝑋 be the number of trials is takes. 𝑋 ~ Geo 𝑝 ≤ ଽ

So, ℙ 𝑋 ≤ 20 ≤ 1 − 1 − ଽ

ଶ

Graph Coloring Problem
The problem: color each node red, blue, or green, BUT minimize nodes
with the same color sharing an edge (i.e., max. edges between distinct)
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation

Graph Coloring Problem
The problem: color each node red, blue, or green, BUT minimize nodes
with the same color sharing an edge (i.e., max. edges between distinct)
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation

Graph Coloring Problem
The problem: color each node red, blue, or green, BUT minimize nodes
with the same color sharing an edge (i.e., max. edges between distinct)
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation

Graph Coloring Problem
The problem: color each node red, blue, or green, BUT minimize nodes
with the same color sharing an edge (i.e., max. edges between distinct)
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation
Simple algorithm: Randomly pick a color for each node
Probability of edge 𝑒 sharing a color (miscoloring) is ଵ

ଷ
, so…

𝔼 𝑆 = ଵ
ଷ
 where 𝑆 is whether edge is miscolored

𝑆 (num. of miscolored edges): 𝑆 = ∑
 𝑆-->𝔼 𝑆 =

ଷ

So, by Markov’s inequality,
ℙ 𝑆 ≥ 1.1 ⋅

ଷ
≤ /ଷ

ଵ.ଵ⋅/ଷ
 = ଵ

ଵ.ଵ
≈ 0.91

The probability of the algorithm miscoloring more than a third edges has a high upper bound

Graph Coloring Problem
The problem: color each node red, blue, or green, BUT minimize nodes
with the same color sharing an edge (i.e., max. edges between distinct)
real world examples: scheduling, coloring a map, sudoku solver, CPU allocation
Simple algorithm: Randomly pick a color for each node
𝑆 (num. of miscolored edges): 𝑆 = ∑

 𝑆-->𝔼 𝑆 =
ଷ

So, by Markov’s inequality,
ℙ 𝑆 ≥ 1.1 ⋅

ଷ
≤ /ଷ

ଵ.ଵ⋅/ଷ
 = ଵ

ଵ.ଵ
≈ 0.91

We can use a Monte Carlo algorithm!
Keep repeating the algorithm 𝑡 times.
Probability you fail to find a good coloring is at most ଵ

ଵ.ଵ

௧

probability is very low with high values of 𝑡

If you like this kind of stuff...
• CSE 421 covers algorithms (like min cut, graph color, and more!)
• CSE 431 covers the theory behind this algorithms (which includes
analysis of randomize algorithms!)

Differential Privacy

Privacy Preservation
A real-world example (adapted from The Ethical Algorithm by Kearns and
Roth; based on protocol by Warner [1965]).
And gives a sense of how randomness is actually used to protect privacy.

Privacy Preservation with Randomness
You’re working with a social scientist. They want to get accurate data on
the rate at which people cheat on their romantic partners.

We know about polling accuracy!
> Use CLT or a tail-bound to estimate the needed number 𝑛 get a
guaranteed good estimate, right?
> Do a poll, call up a random sample of adults and ask them “have you
ever cheated on your romantic partner?”
You do that, and somehow, no one says they cheated. I wonder why…

What’s the problem?
People lie.

Or they might be concerned about you keeping this data.
Databases can be leaked (or infiltrated. Or subpoenaed).
You don’t want to hold this data, and the people you’re calling
don’t want you to hold this data.

Doing It Better!
You don’t need to know who was cheating. Just how many people were.
Here’s a protocol:
Please flip a coin.
If the coin is heads, or you have ever cheated, please tell me ‘heads’
If the coin is tails and you have not ever cheated, please tell me ‘tails’

We have two concerns with this:
> Will it now be private?
> Will we be able to make accurate estimates using this data?

Will it be private?
Please flip a coin.
If the coin is heads, or you have ever cheated, please tell me ‘heads’
If the coin is tails and you have not ever cheated, please tell me ‘tails’

If you are someone who has cheated, and you report heads can that be
used against you? Not substantially – just say “no the coin came up
heads!”

You discover your partner said heads, what’s the probability that they
cheated?

Will it be private?
If you are someone who has cheated on your spouse, and you report
heads can that be used against you? Not substantially – just say “no the
coin came up heads!”

ℙ 𝐶 𝐻 = ℙ(ு|)⋅ℙ()
ℙ(ு)

 = ଵ⋅ℙ()
భ
మℙ() ାଵ⋅ℙ()

Is this a substantial change?
No. For real world values (~15%) of ℙ(𝐶), the probability estimate would
increase (to ~26%). But that isn’t too damaging.

But will it be accurate?
But we’ve lost our data haven’t we? People answered a different question.
Can we still estimate how many people cheated?
Suppose you poll 𝑛 people, and let 𝑋 be the number of people who said
“heads” We’ll find an estimate 𝑌 of the number of people who cheated in the
sample, and let 𝑝 be the true probability of cheating in the population.
 What should 𝑌 be? Can we draw a margin of error around 𝑌?
ℙ 𝑋 = 1 = ଵ

ଶ
+ ଵ

ଶ
⋅ 𝑝

𝔼 𝑋 =
ଶ

+ ଵ
ଶ

𝔼 𝑌

We’ll define 𝑌 to be: 𝑌 = 2 𝑋 −
ଶ

.
This is a definition, based on how the 𝔼[𝑌] should relate to the 𝔼[𝑋].

Mobile User

But will it be accurate?
𝔼 𝑋 =

ଶ
+ ଵ

ଶ
𝔼[𝑌]

𝑌 = 2 𝑋 −
ଶ

Var 𝑋 = Var ∑𝑋 = ∑Var 𝑋

Var 𝑋 ? It’s an indicator with parameter 𝑝 + 1 − 𝑝 ⋅ ଵ
ଶ

= ଵ
ଶ

+
ଶ

So Var 𝑋 = ଵ
ଶ

+
ଶ

ଵ
ଶ

−
ଶ

Var 𝑌 = 4Var 𝑋 = 4𝑛Var 𝑋 = 4𝑛 ଵ
ଶ

+
ଶ

ଵ
ଶ

−
ଶ

≤ ସ
ସ

= 𝑛

The variance is 4 times as much as it would have been for a non-anonymous
poll.

Mobile User

Can we use Chernoff?

What happens with n = 1000 people?
What range will we be within at least 95% of the time?

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋 be independent Bernoulli random variables.
Let 𝑋 = ∑𝑋, and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp − ఋమఓ
ଷ

 and ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp − ఋమఓ
ଶ

(Multiplicative) Chernoff Bound

 Can’t bound 𝛿 without bounding 𝑝
The right tail is the looser bound, so ensuring the right tail is less than
2.5% gives us the needed guarantee.

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp − ఋమఓ
ଷ

= exp − ఋమଵ
ଷ

≤ .025

− ఋమଵ
ଷ

≤ ln(.025)

−𝛿ଶ≤ ଷ⋅୪୬ .ଶହ
ଵ

𝛿 ≥ ିଷ୪୬(.ଶହ)
ଵ

As 𝑝 → 0, 𝛿 → ∞ – we’re not actually making a claim anymore.

A different inequality
If we try to use Chernoff, we’ll hit a frustrating block.
Since 𝜇 depends on 𝑝, 𝑝 appears in the formula for 𝛿. And we wouldn’t
get an absolute guarantee unless we could plug in a 𝑝.
And it’ll turn out that as 𝑝 → 0 that 𝛿 → ∞ so we don’t say anything
then.

Luckily, there’s always another bound…

Hoeffding’s Inequality

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. Why?

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋 be independent RVs, each with range [0,1].
Let ത𝑋 = ∑𝑋/𝑛, and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡ଶ

Hoeffding’s Inequality

𝑌 = 2 𝑋 −
ଶ

 or 𝑋 = ା
ଶ

𝑋 − 𝔼 𝑋

= ା
ଶ

− 𝔼 ା
ଶ

= ା
ଶ

− 𝔼
ଶ

−
ଶ

=
ଶ

− 𝔼
ଶ

= ଵ
ଶ

𝑌 − 𝔼 𝑌

So 𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if ଵ
ଶ

𝑌 − 𝔼 𝑌 ≥ 𝑡 iff 𝑌 − 𝔼 𝑌 ≥ 2𝑡.

Hoeffding’s Inequality

How close will we be with n=1000 with probability at least .95?
𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡.

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋 be independent RVs, each with range [0,1].
Let ത𝑋 = ∑𝑋/𝑛, and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡ଶ

Hoeffding’s Inequality

Margin of Error
ℙ 𝑌 − 𝔼 𝑌 ≥ 𝑡 = ℙ 𝑋 − 𝔼 𝑋 ≥ 𝑡/2 ≤ 2 exp −2𝑛𝑡ଶ ≤ .05
For 𝑛 = 1000, we get:
2 exp −2𝑛 ௧

ଶ

ଶ
≤ .05 ⇒ − ଶ௧మ

ସ
≤ ln .025 ⇒ 𝑡 ≤ .086.

ℙ 𝑌 − 𝔼 𝑌 ≥ .086 ≤ .05
So our margin of error is about 8.6%.

To get a margin-of-error of 5% need 2 exp −2𝑛 .ହ
ଶ

ଶ
≤ .05

𝑛 ≥ 2952

How much do we lose?
We lose a factor of two in the length of the margin (equivalently, we’d
need to talk to 4 times as many people to have the same confidence.

You can also control this tradeoff.
Want more accuracy? Make it roll a die: report 1 if cheated (truth o/w)
Want more security? Make it Bernoulli with probability 𝑝 ≫ ଵ

ଶ
 or cheated

have the same report (e.g. report “die roll 1 [and didn’t cheat]” or “die
roll 2-6 [or did cheat]”

In The Real World
Injecting random ness to preserve privacy is a real thing.
Instead of having everyone flip a coin, “random noise” can be inserted
after all the data has been collected.
Differential privacy is being used to protect the 2020 Census data.
The overall count of people in each state is exact (well, exactly the data
they collected). But the data per block or per city will be randomized to
protect against .
This video nicely explains what’s involved. Notice that the accuracy
guarantees come in the same “inside-margin-of-error-with-probability”
guarantees we’ve been giving for our randomness (just much stronger).

https://www.youtube.com/watch?v=pT19VwBAqKA

	Slide 1: More applications! More “bandits”, Randomized Algorithms, etc.
	Slide 2: Logistics
	Slide 3: The Problem
	Slide 4: The Problem
	Slide 5: Our Problem (summarized)
	Slide 6: Before we go on…why is this important?
	Slide 7: Why is this a challenging problem?
	Slide 8: Simplification for the problem
	Slide 9: Strategy 1: Naïve, Greedy Approach
	Slide 10: Strategy 1: Naïve, Greedy Approach
	Slide 11: Strategy 1: Naïve, Greedy Approach
	Slide 12: Strategy 1: Naïve, Greedy Approach
	Slide 13
	Slide 14: Strategy 1: Naïve, Greedy Approach
	Slide 15: Problems with this approach
	Slide 16: Strategy 2: Epsilon-Greedy
	Slide 17: Strategy 2: Epsilon Greedy
	Slide 18: Still some problems!
	Slide 19: Strategy 3: Upper Confidence Bound
	Slide 20: Confidence Interval for Our Estimates
	Slide 21: Confidence Interval for Our Estimates
	Slide 22: Outline of CLT steps
	Slide 23: Confidence Interval for Our Estimates
	Slide 24
	Slide 25: Confidence Interval for Our Estimates
	Slide 26: Handling square root of , theta sub 2 , open paren 1 minus theta sub 2 , , close paren , end square root
	Slide 27: Worst value of p
	Slide 28
	Slide 29
	Slide 30: Upper Confidence Bound
	Slide 31: Upper Confidence Bound
	Slide 32: Strategy 4: Thompson Sampling
	Slide 33: Muti-Armed Bandits aren’t perfect
	Slide 34: Tail Bounds In The Wild
	Slide 35: Tail Bounds – Summary
	Slide 36: Algorithm Analysis
	Slide 37: Randomized Algorithms
	Slide 38: Two Common Types
	Slide 39: Graphs
	Slide 40: Maximum Cut Problem
	Slide 41: Maximum Cut Problem
	Slide 42: Maximum Cut Problem
	Slide 43: Maximum Cut Problem
	Slide 44: Maximum Cut Problem
	Slide 45: Maximum Cut Problem
	Slide 46: Maximum Cut Problem
	Slide 47: Maximum Cut Problem
	Slide 48: Maximum Cut Problem
	Slide 49: Maximum Cut Problem
	Slide 50: Maximum Cut Problem
	Slide 51: Maximum Cut Problem
	Slide 52: Graph Coloring Problem
	Slide 53: Graph Coloring Problem
	Slide 54: Graph Coloring Problem
	Slide 55: Graph Coloring Problem
	Slide 56: Graph Coloring Problem
	Slide 57: If you like this kind of stuff...
	Slide 58: Differential Privacy
	Slide 59: Privacy Preservation
	Slide 60: Privacy Preservation with Randomness
	Slide 61: What’s the problem?
	Slide 62: Doing It Better!
	Slide 63: Will it be private?
	Slide 64: Will it be private?
	Slide 65: But will it be accurate?
	Slide 66: But will it be accurate?
	Slide 67: Can we use Chernoff?
	Slide 68: Can’t bound delta without bounding p
	Slide 69: A different inequality
	Slide 70: Hoeffding’s Inequality
	Slide 71: cap Y equals 2 open paren cap X minus n over 2 , close paren or cap X equals numerator , cap Y plus n end numerator , over 2
	Slide 72: Hoeffding’s Inequality
	Slide 73: Margin of Error
	Slide 74: How much do we lose?
	Slide 75: In The Real World

