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Bandits
CSE 312 24Su
Lecture 22

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 

https://xkcd.com/1445/

https://xkcd.com/1445


Logistics

• See post about HW5 + recorded video walkthrough for LoTE practice

• Ed announcement with final resources and information

• Today will be the last concept check!

• No more lecture notes for the rest of the quarter



The Problem

There are 𝐾 slot machines (“bandits” with “arms”).
“Bandits” because they steal your money

You pull arms 𝑇 times, where the arm you pull at time 𝑡 (arm pulled at 
time t is 𝑎𝑡 ∈ {1, … , 𝐾}) will return a random reward to you



The Problem

Your goal? Win as much money as possible! That is, maximize your 
total expected reward after T pulls of an arm of the K slot machines.

Question: How do you know which arm to pull (based on information 
you have – the past) to achieve your goal?

Assumptions: 

1. Rewards from each arm are independent. 

2. The reward distribution of an arm does not change over time.



If you knew the reward distribution…

You have the below 𝐾 = 3 slot machines, whose distribution of rewards 
you know. What strategy are you going to use to maximize your total 
(expected) reward? 



If you knew the reward distribution…

You have the below 𝐾 = 3 slot machines, whose distribution of rewards 
you know. What strategy are you going to use to maximize your total 
(expected) reward? 

We compute expected reward per pull: 1.36, 4, −1. So, pull arm 2 all times!



Neat! Problem solved! Or not…

Aren’t you glad you learnt calculate expectations so early in this course?

Oh wait…why would we know the reward distributions of slot machines?

We don’t  

We need to… estimate all K expectations. 

WHILE maximizing the total (expected) reward.

??? ??? ???



Our Problem (summarized)

There are 𝑘 “arms”. We get some reward when we pull the arm, but 

we don’t know the distribution with which the rewards are given. 

Each time we pull an arm, we can observe the reward we get.

Our goal: Derive a strategy for picking which arm to pull to maximize 

the total reward based on observations from your previous pulls. 



Before we go on…why is this important?
Lot’s of problems (reinforcement learning) can be phrased as a bandit problem! 

A/B Testing: Experiment with releasing a new feature, or test ads to maximize click rate. 

Arms: feature(s)/ad(s) to test                         Maximize: total ratings/click rate

Clinical Trials: 𝐾 treatment options. For each patient, give treatment and observe results. 

Arms: different possible treatments              Maximize: number of patients healed

Very real life: For each meal, you choose food, and track your happiness after eating.

Arms: possible food options                          Maximize: total/average happiness

Recommendations: 𝐾 movies options. Recommend each person a movie and observe. 

Arms: available movies                                  Maximize: clicks/rating recommendations

Networks: Adaptive routings for picking best route for each pieces of data. 

Arms: available routes                                   Maximize: transmission speed



Why is this a challenging problem?

There’s a tradeoff between… 

Exploitation (act accordingly to what you know is going to work) 
Pulling arms that we know are “good” based on reward history. 

Exploration (explore other options that might increase reward)
Pulling other arms in case they could be “good” or “better”.

Regret: The difference between the optimal, best possible total 

(expected) reward and the actual reward from our choices of T pulls



Simplification for the problem

In this case, let’s say that each “arm” rewards either $1, $10, or $100.  

We don’t know what the probabilities are though…so the PMF for the 
reward of arm 𝑖 is:

𝑝𝐴𝑖
𝑘 = ቐ

1 − 𝜃1 − 𝜃2 𝑘 = 1
𝜃1 𝑘 = 10
𝜃2 k = 100

Again, our goal is to find a strategy for picking an arm to pull that will 
maximize the total reward over the T pulls. 



Strategy 1: Naïve, Greedy Approach



Strategy 1: Naïve, Greedy Approach

1. Explore. Pull each arm 𝑀 times and record the reward from each

Based on data for each, estimate the parameters 𝜃1 and 𝜃2 for each arm

 2. Exploit. Pick arm with highest estimated expected value and only use 
that arm for the remaining pulls. 

1 1 2 2 3 3 2 2 2 2 2

1. Explore (here, there are 3 arms, and 𝑀 = 2) 2. Exploit



Strategy 1: Naïve, Greedy Approach

1. Explore. Pull each arm 𝑀 times and record the reward from each

Based on data for each, estimate the parameters 𝜃1 and 𝜃2 for each arm
How do we do this…..Maximum Likelihood Estimation!

 2. Exploit. Pick arm with highest estimated expected value and only use 
that arm for the remaining pulls. 

1 1 2 2 3 3 2 2 2 2 2

1. Explore (here, there are 3 arms, and 𝑀 = 2) 2. Exploit



Strategy 1: Naïve, Greedy Approach

Pull arm 1 35 times and record the reward from each.

We see rewards 𝑥1, 𝑥2, … , 𝑥35. Out of these, we get $1 5 times, $10 10 
times and $100 20 times.  What is the MLE for 𝜃1 and 𝜃2 for arm 1?

1. Likelihood Function

2. Log-likelihood Function

3. Derivative(s) of Log-likelihood Function

𝑝𝐴1
𝑘 = ቐ

1 − 𝜃1 − 𝜃2 𝑘 = 1
𝜃1 𝑘 = 10
𝜃2 k = 100



….

4. Set the derivative(s) to 0 and solve for MLE(s)

5. Second derivative Test

> Next step would be to repeat this process and get estimates all arms

> Use the estimates to compute the expected reward from each 

> Pick the arm with highest expected reward for the remaining pulls



Strategy 1: Naïve, Greedy Approach
Pull arm 1 35 times and record the reward from each.

We see rewards 𝑥1, 𝑥2, … , 𝑥35. Out of these, we get $1 5 times, $10 10 times and $100 20 
times.  What is the MLE for 𝜃1 and 𝜃2 for arm 1?

1. Likelihood Function
ℒ 𝑥1, … , 𝑥𝑛; 𝜃1, 𝜃2 = 𝜃1

10 𝜃2
20 1 − 𝜃1 − 𝜃2

5 

2. Log-likelihood Function
ln ℒ 𝑥1, … , 𝑥𝑛; 𝜃1, 𝜃2 = 10 ⋅ ln 𝜃1 + 20 ⋅ ln 𝜃2 + 5 ⋅ ln 1 − 𝜃1 − 𝜃2  

3. Derivative(s) of Log-likelihood Function

Partial derivative w.r.t. 𝜃1: 
𝜕

𝜕𝜃1
ln ℒ 𝑥1, … , 𝑥𝑛; 𝜃1, 𝜃2 =

10

𝜃1
−

5

1−𝜃1−𝜃2

Partial derivative w.r.t. 𝜃2: 
𝜕

𝜕𝜃1
ln ℒ 𝑥1, … , 𝑥𝑛; 𝜃1, 𝜃2 =

10

𝜃1
−

5

1−𝜃1−𝜃2

4. Set the derivative(s) to 0 and solve for MLE(s)
10

෢𝜃1
−

5

1−෢𝜃1−෢𝜃2
= 0 and

10

෢𝜃1
−

5

1−෢𝜃1−෢𝜃2
. Solving system of equations… ෢𝜃1 =

10

35
, ෢𝜃2 =

20

35

5. Second derivative Test

𝑝𝐴𝑖
𝑘 = ቐ

1 − 𝜃1 − 𝜃2 𝑘 = 1
𝜃1 𝑘 = 10
𝜃2 k = 100



Strategy 1: Naïve, Greedy Approach

Pull arm 1 35 times and record the reward from each.

We see rewards 𝑥1, 𝑥2, … , 𝑥35. Out of these, we get $1 5 times, $10 10 times 
and $100 20 times.  What is the MLE for 𝜃1 and 𝜃2 for arm 1?

෢𝜃1 =
10

35
, ෢𝜃2 =

20

35

How good is this estimator? Is it biased? 

1. Write a generalized form of the estimator

2. Check if it’s unbiased

𝑝𝐴𝑖
𝑘 = ቐ

1 − 𝜃1 − 𝜃2 𝑘 = 1
𝜃1 𝑘 = 10
𝜃2 k = 100



Strategy 1: Naïve, Greedy Approach

Pull arm 1 35 times and record the reward from each.

We see rewards 𝑥1, 𝑥2, … , 𝑥35. Out of these, we get $1 5 times, $10 10 times 
and $100 20 times.  What is the MLE for 𝜃1 and 𝜃2 for arm 1?

෢𝜃1 =
10

35
, ෢𝜃2 =

20

35

How good is this estimator? Is it biased? 

1. Write a generalized form of the estimator

Let 𝑋𝑖~Ber(𝜃1) and 𝑌𝑖~Ber(𝜃2) --> ෢𝜃1 =
σ𝑖=1

35 𝑋𝑖

35
, ෡𝜃𝑖 =

σ𝑖=1
35 𝑌𝑖

35

2. Check if it’s unbiased

𝔼 ෢𝜃1 = 𝔼
σ𝑖=1

35 𝑋𝑖

35
=

σ𝑖=1
35 𝔼[𝑋𝑖]

35
= 𝜃1    𝔼 ෢𝜃2 = 𝔼

σ𝑖=1
35 𝑌𝑖

35
=

σ𝑖=1
35 𝔼[𝑌𝑖]

35
= 𝜃2 

𝑝𝐴𝑖
𝑘 = ቐ

1 − 𝜃1 − 𝜃2 𝑘 = 1
𝜃1 𝑘 = 10
𝜃2 k = 100



Problems with this approach 

We may not get an accurate idea from our first 𝑀 pulls of each arm 

> If we choose the wrong best arm, we’d regret it for the rest of time!

> If we increase M, we are spending more time on sub-optimal arms

Problem: We did all exploration, and then all exploitation. 

 Why don’t we blend the two a bit more?



Strategy 2: Epsilon-Greedy



Strategy 2: Epsilon Greedy

1. Explore. Pull each arm 𝑀 times and record the reward from each 
(same as before)

2. Exploit (with a mix of exploration!). With a small probability of 𝜖, try a 
random other arm. Otherwise calculate “best arm” Based on data for 
each, estimate the parameters 𝜃1 and 𝜃2 for each arm and pick best arm 
with highest estimated expected value. 

Better!

 > continuously updates estimated expected reward when it is pulled

 > explores with some probability 𝜀 which allows you to choose how 

to balance exploration and exploitation.



Still some problems!

Is uniform exploration the optimal policy? 
Is a higher estimate always a better choice?

We have our estimates ෢𝜃1 and ෢𝜃2 for each arm that we use to find the 
expected reward for each arm. As we see more data, we can update 
these estimates. 

But, for example…

> After 300 samples from arm 1, ෢𝜃2 = 0.3

> After 3 samples from arm 2, ෢𝜃2 = 0.2

are very different! In this case, arm 2 still has a potential to have a much 
higher true probability of getting $100, but with arm 1, it’s less likely

We don’t want to explore these equally! 



Strategy 3: Upper Confidence Bound
Explore arms that have a higher potential of a better expectation



Confidence Interval for Our Estimates

Instead of picking the arm with the highest expected value, pick the arm 
with the highest potential for expected value? 

How to calculate “potential”? Use a confidence interval! 
For each of the estimated parameters, what range can we be 95% sure the true 
parameter lies in? 

E.g. for arm 1, ෢𝜃1 = 0.2 --> 𝜃1 ∈ 0.2 − 0.15. , 0.2 + 0.15 = 0.05,0.35
                      ෢𝜃2 = 0.3 --> 𝜃2 ∈ 0.3 − 0.1, 0.3 + 0.1 = [0.2,0.4] 

On the next slide, we’re going to just look at the estimate for one of the 

parameters, 𝜃2, but ideally, we would also look at the other parameter, and 

use it to estimate the expected value 1 − ෢𝜃1 − ෢𝜃2 + 10 ⋅ ෢𝜃1 + (100 ⋅ ෢𝜃2)



Confidence Interval for Our Estimates

For an estimate ෢θ2 on arm 𝑖 after seeing 35 samples, what is the smallest 

value of 𝑎 such that the distance between the true θ2 and the estimate   ෢θ2 is 

at most 𝑎 with at least 95% confidence?

 Translating to math notation….

ℙ 𝜃2 − 𝑎 ≤ ෢𝜃2 ≤ 𝜃2 + 𝑎 ≥ 0.95

And what exactly is ෢𝜃2 again? 

෢𝜃2 =
σ𝑖=1

35 𝑌𝑖

35
= σ𝑖=1

35 𝑌𝑖

35
 , where 𝑌𝑖~Ber(𝜃2) 

^ is a sum of i.i.d RVs! So, what can we use to solve for 𝑎?



Outline of CLT steps

1. Setup the problem (e.g., 𝑋 = σ𝑖=1
𝑛 𝑋𝑖 , 𝑋𝑖 are i.i.d., and we want ℙ(𝑋 ≤ 𝑘))

   Write event you are interested in, in terms of sum of random variables.

     Apply continuity correction here if RVs are discrete.

2. Apply CLT (e.g., approx 𝑋 as 𝑌~𝑁(𝑛𝜇, 𝑛𝜎2) -> ℙ 𝑋 ≤ 𝑘 ≈ ℙ 𝑌 ≤ 𝑘
    Approximate sum of RVs as normal with appropriate mean and variance

from here, we’re working with a normal distribution, which we’ve worked with before!

3. Compute probability approximation using Phi table

     > Standardize  (𝑍 =
𝑁−𝜇

𝜎
) -> ℙ 𝑌 ≤ 𝑘 = ℙ

𝑌−𝜇

𝜎
≤

𝑘−𝜇

𝜎
= ℙ 𝑍 ≤

𝑘−𝜇

𝜎

     > Write in terms of 𝛷 𝑧 =  ℙ(Z ≤ 𝑧)

     > Look up in table



Confidence Interval for Our Estimates

We have this MLE estimate: ෢𝜃2 =
σ𝑖=1

35 𝑌𝑖

35
= σ𝑖=1

35 𝑌𝑖

35
 , where 𝑌𝑖~Ber(𝜃2) 

What is the value of a such that: ℙ θ2 − a ≤ ෢θ2 ≤ θ2 + a ≥ 0.95

1. Setup the problem

2. Apply CLT



3. Compute probability approximation using Phi table





Upper Confidence Bound



Upper Confidence Bound

More frequent pulls from an arm --> smaller upper confidence bound
After seeing more observations, the variance of distribution decreases

Less frequent pulls from an arm --> larger upper confidence bound
After not seeingmany observations, more variation is still possible
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