

2. TAKE LOG OF THE LIKELIHOOD (LOG-LIKELIHOOD

The product rule is not fun!! So, take the log of the likelihood function before taking the derivative! ln(a*b)=ln(a)+ln(b)

Can we still take the max? Yes! In() is an increasing function, so

 $\operatorname{argmax}_{\theta} \ln(\mathcal{L}(E;\theta)) = \operatorname{argmax}_{\theta} \mathcal{L}(E;\theta)$ "the log of the likelihood will increase as the likelihood increases and vice verse, so, the value of θ that maximizes the log likelihood also maximized the likelihood"

Coin Example: $\ln(\mathcal{L}(\text{HTTTHHTHHH}; \theta)) =$

Now, we want to find the value of theta, that will maximize the likelihood (maximize the probability of the data) The MLE of the parameter θ is: $\hat{\theta} = \operatorname{argmax}_{\theta} \mathcal{L}(E;\theta)$ If solving for MLE with 2 parameters, look for the pair of values that give the max likelihood **3. TAKE DERIVATIVE(S) OF THE LOG-LIKELIHOOD** If solving for MLE with 2 parameters, take **partial derivatives** with respect to each parameter

...

4. SET DERIVATIVE(S) TO 0, SOLVE FOR THE MLE

If solving for MLE with 2 parameters, set both

derivatives to 0, and solve system of equations.

5. 2ND DERIVATIVE TEST TO VERIFY MAX

X

X

Suppose you get values $x_1, x_2, ..., x_n$ from independent draws of a normal random variable $\mathcal{N}(\mu, 1)$ (for an unknown μ). Find the MLE for μ .

1. Write the likelihood function:

2. Take the log of the likelihood function

3. Take the derivatives of the log-likelihood function

4. Set the derivatives to 0, and solve for the MLE θ^{\uparrow}

5. Verify it is a maximum with second derivative test (not required for 312)

Let θ_{μ} and θ_{σ^2} be the unknown mean and variance of a normal distribution. We get independent draws $x_1, x_2, ..., x_n$ from the distribution. Find the MLEs for θ_{μ} and θ_{σ^2} .

1. Write the likelihood function:

2. Take the log of the likelihood function

3. Take the derivatives of the log-likelihood function

4. Set the derivatives to 0, and solve for the MLE $heta^{\uparrow}$

5. Verify it is a maximum with second derivative test (not required for 312)