
Maximum Likelihood 
Estimators (MLE) (cont.)

CSE 312 24Su
Lecture 21

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Logistics

> Concept check 19 will be due with today’s concept check 20

> Concept check 18 late due date tonight 

> Keep an eye out for final exam post, HW6 post, and video 
walkthrough of the elevator problem tonight/tomorrow morning! 



Up till now…

So far, the probability questions we’ve asked have followed a pattern:

You’re given a model with the probabilities you need to make predictions.

> 𝑋~Bin(𝑛, 𝑝), compute some probabilities about 𝑋, compute 𝐸[𝑋]

> We have a distribution that takes on these outcomes with these 
probabilities. Compute the probability of some event or set of outcomes.

> Before we run the entire experiment, let’s make some predictions

In real world, we usually don’t know all the rules of a random experiment
hence tail bounds, CLT, etc. to estimate probabilities in these situations

But, can we estimate those missing rules/parameters to a distribution?



Maximum Likelihood Estimation

We derive an estimate 𝛉 for the parameter 𝛉 based on observed data

1. We’re going to run the random experiment a bunch of times (i.e., 
collect a bunch of samples from the distribution) -> this gives data
e.g., we flip a coin that follows Ber(𝑝) 10 times and write down the results – HTTTH…

2. Estimate the missing rules (unknown parameter(s)) based on the data
How do we do this? Well, we got some data - High probability events happen more 
often than low probability events. So, guess the rules that maximize the probability 
of the events we saw (relative to other choices of the rules).

e.g., what is the value of 𝑝 that makes the probability of seeing HTTTH… the highest?

To do this, we will define a function that will tell us the probability of seeing 

particular data (a particular set of samples from the distribution) based on a 

particular value of the unknown parameter(s) 𝜃



Likelihood function

𝓛(𝑬; 𝜽) is ℙ(𝐸) when the experiment is run with 𝜃
“what is probability of seeing the event 𝐸 (in our case, the set of data), if the 
experiment is run with the parameter 𝜃?”

We can’t use probability notation because likelihood doesn’t follow the same rules

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃

Coin example

We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 𝜃6 1 − 𝜃 4 (multiply because independent)

“Probability of observing HTTTHHTHHH if 𝜽 is probability of heads on a single flip”

Likelihood Function: Likelihood of 𝑛 observations (from discrete distribution)

ℒ 𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃 = Π𝑖=1
𝑛 ℙ(𝑥𝑖; 𝜃)



Maximum Likelihood Estimation

We will choose the estimator መ𝜃 = argmax𝜃  ℒ(𝐸; 𝜃)
“the value of 𝜃 that makes the likelihood of seeing the observed data the highest” 

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃

𝜃 is a variable, መ𝜃 is a number (or formula given the event).

Use መ𝜃MLE if we want to emphasize how we found the estimator.

The maximum likelihood estimator of the parameter θ is:
መ𝜃 = argmax𝜃  ℒ(𝐸; 𝜃)

Maximum Likelihood Estimator



The maximum likelihood estimator of the parameter θ is: መ𝜃 =
argmax𝜃  ℒ(𝐸; 𝜃)

Maximum Likelihood Estimator

Coin example (goal: estimate 𝜽 = 𝒑, the probability of heads on a flip)
We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 𝜃6 1 − 𝜃 4 (multiply because independent)

Now, find the value of 𝛉 that maximizes the likelihood…How do we find a max?

Calculus!! Take the derivative of ℒ(E; θ), set to 0, and solve for θ

Take the derivative:
𝑑

𝑑𝜃
𝜃6 1 − 𝜃 4 = 6𝜃5 1 − 𝜃 4 − 4𝜃6 1 − 𝜃 3 

Set to 0 and solve: (now, we’re solving for the maximum likelihood estimator, 𝜽)

6 𝜃5 1 − 𝜃
4

− 4 𝜃6 1 − 𝜃
3

= 0 ⇒ 6 1 − 𝜃 − 4 𝜃 = 0 ⇒ −10 𝜃 = −6 ⇒ 𝜃 =
3

5
 

The MLE 𝜃 estimating the true 𝜽 = 𝒑 is 𝟑/𝟓 just like we expected! 



Is that really the maximum?

What we really did was find the critical point (which could either be the 
maximum or the minimum), so ideally do second derivative test to check

1. Take the second derivative (the derivative of the derivative)

2. If negative everywhere around the critical point, it is the maximum

In this class, we won’t ask you to do the second derivative test, you can 
assume the solution you find is a maximum ☺ 

> to sanity check your answer, at least make sure that the estimator you 
find is valid for what you are trying to estimate



Our MLE process so far…

We’re given that there’s a distribution with some unknown parameter(s) θ. 
There are independent observations x1, x2, … , xn from this distribution.

To find the MLE θ for this unknown parameter(s) θ….
1. Write the likelihood function - ℒ 𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃 = Π𝑖=1

𝑛 ℙ(𝑥𝑖; 𝜃)
   multiply (not add) probabilities of seeing each of the observations based on 𝜃

2. Take the derivative of the log-likelihood function -
𝑑

𝑑𝜃
(ℒ 𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃

3. Set the derivative to 0, and solve for the MLE 𝜽
     remember to switch from 𝜃 to 𝜃 in this step because we’re now solving for the MLE

4. Verify it is a maximum with second derivative test (not required for 312)



Half a step backwards…

Since the likelihood function is a product of probabilities of seeing each 
of the samples, we’re going to be taking the derivative of products a lot

The product rule is not fun!! There has to be a better way!



Half a step backwards…

Since the likelihood function is a product of probabilities of seeing each 
of the samples, we’re going to be taking the derivative of products a lot

The product rule is not fun!! There has to be a better way!

Take the log of the likelihood function before taking the derivative!

Recall: ln 𝑎 ⋅ 𝑏 = ln 𝑎 + ln(𝑏)

And, we don’t need the product rule if our expression is a sum!

Can we still take the max? Yes! ln() is an increasing function, so

argmaxθ ln ℒ(𝐸; 𝜃) = argmaxθ ℒ 𝐸; 𝜃   
“the log of the likelihood will increase as the likelihood increases and vice verse, 
so, the value of 𝜃 that maximizes the log likelihood also maximized the likelihood”



Half a step backwards…

Since the likelihood function is a product of probabilities of seeing each 
of the samples, we’re going to be taking the derivative of products a lot

The product rule is not fun!! There has to be a better way!

Take the log of the likelihood function before taking the derivative!

Recall: ln 𝑎 ⋅ 𝑏 = ln 𝑎 + ln(𝑏)

And, we don’t need the product rule if our expression is a sum!

Can we still take the max? Yes! ln() is an increasing function, so

argmaxθ ln ℒ(𝐸; 𝜃) = argmaxθ ℒ 𝐸; 𝜃   
“the log of the likelihood will increase as the likelihood increases and vice verse, 
so, the value of 𝜃 that maximizes the log likelihood also maximized the likelihood”

𝜃(1 − 𝜃)

ln(𝜃(1 − 𝜃)



Coin flips is easier

1. Likelihood function: ℒ(HTTTHHTHHH; 𝜃) = 𝜃6 1 − 𝜃 4

2. Take the log: ln(ℒ(HTTTHHTHHH; 𝜃) = 6 ln 𝜃 + 4 ln(1 − 𝜃)

3. Take the derivative: 
𝑑

𝑑𝜃
ln ℒ ⋅ =

6

𝜃
−

4

1−𝜃

4. Set to 𝟎 and solve:

 
6

𝜃
−

4

1−𝜃
= 0 ⇒

6

𝜃
=

4

1−𝜃
 ⇒ 6 − 6 መ𝜃 = 4 መ𝜃  ⇒ መ𝜃 =

3

5

5. Check it’s a maximum (can skip in 312) 

 
𝑑2

𝑑𝜃2 =
−6

𝜃2 −
4

1−𝜃 2 < 0 everywhere, so any critical point is a maximum.

Derivative is much easier!!



Solving MLE (the process)

We’re given that there’s a distribution with some unknown parameter(s) θ. 
There are independent observations x1, x2, … , xn from this distribution.

To find the MLE θ for this unknown parameter(s) θ….
1. Write the likelihood function 
 multiply (not add) probabilities of seeing each of the observations based on 𝜃

2. Take the log 𝒍𝒏(. . ) of the likelihood function (makes the math easier)
     use log rules and simplify fully, as much as you can, to make the math easier later 

3. Take the derivative of the log-likelihood function

4. Set the derivative to 0, and solve for the MLE 𝜽
     remember to switch from 𝜃 to 𝜃 in this step because we’re now solving for the MLE

5. Verify it is a maximum with second derivative test (not required for 312)



Important Log Rules

•  ln 𝑎 ⋅ 𝑏 = ln 𝑎 + ln(𝑏)

•  ln 𝑎𝑏 = b ⋅ ln 𝑎

•  ln 𝑎 − 𝑏 =
ln 𝑎

ln 𝑏

•  ln 𝑒𝑎 = 𝑎

•
𝑑

𝑑𝜃
ln 𝑚 =

1

m
⋅

𝑑

𝑑𝜃
(𝑚)



MLEs with Continuous Random Variables



What about continuous random variables?

Can’t use probability, since the probability is going to be 0.

  

All other steps are exactly the same!
Likelihood Function: Likelihood of 𝑛 observations (from continuous distribution)

ℒ 𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃 = Π𝑖
𝑛 



What about continuous random variables?

Can’t use probability, since the probability is going to be 0.

Can use the density! 

It’s supposed to show relative chances, that’s all we’re trying to find 
anyway. 

All other steps are exactly the same!

Likelihood Function: Likelihood of 𝑛 observations (from continuous distribution)

ℒ 𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃 = Π𝑖
𝑛𝑓𝑋(𝑥𝑖; 𝜃)



Example: MLE on Continuous Normal

Suppose you get values 𝑥1, 𝑥2, … 𝑥𝑛 from independent draws of a normal 
random variable 𝒩(𝜇, 1)  (for an unknown 𝜇). Find the MLE for 𝜇.

We’ll also call these “realizations” of the random variable.



Example: MLE on Continuous Normal

Suppose you get values 𝑥1, 𝑥2, … 𝑥𝑛 from independent draws of a normal 
random variable 𝒩(𝜇, 1)  (for an unknown 𝜇)

We’ll also call these “realizations” of the random variable.

1. Write the likelihood function: ℒ(𝑥𝑖; 𝜇) = ς𝑖=1
𝑛 1

2𝜋
𝑒

−
1

2
𝑥𝑖−𝜇 2

  



Example: MLE on Continuous Normal

Suppose you get values 𝑥1, 𝑥2, … 𝑥𝑛 from independent draws of a normal 
random variable 𝒩(𝜇, 1)  (for an unknown 𝜇)

We’ll also call these “realizations” of the random variable.

1. Write the likelihood function: ℒ(𝑥𝑖; 𝜇) = ς𝑖=1
𝑛 1

2𝜋
𝑒

−
1

2
𝑥𝑖−𝜇 2

2. Take the log of the likelihood ln(ℒ(𝑥𝑖; 𝜇)) = σ𝑖=1
𝑛 ln

1

2𝜋
−

1

2
𝑥𝑖 − 𝜇 2

  
ln ℒ 𝑥𝑖; 𝜇 = σ𝑖=1

𝑛 ln(
1

2𝜋
𝑒

−
1

2
𝑥𝑖−𝜇 2

) 

                             = σ𝑖=1
𝑛 ln(

1

2𝜋
) + ln(𝑒

−
1

2
𝑥𝑖−𝜇 2

)   

                                    = σ𝑖=1
𝑛 ln

1

2𝜋
−

1

2
𝑥𝑖 − 𝜇 2



Example: MLE on Continuous Normal

Suppose you get values 𝑥1, 𝑥2, … 𝑥𝑛 from independent draws of a normal 
random variable 𝒩(𝜇, 1)  (for an unknown 𝜇)

We’ll also call these “realizations” of the random variable.

1. Write the likelihood function: ℒ(𝑥𝑖; 𝜇) = ς𝑖=1
𝑛 1

2𝜋
𝑒

−
1

2
𝑥𝑖−𝜇 2

2. Take the log of the likelihood ln(ℒ(𝑥𝑖; 𝜇)) = σ𝑖=1
𝑛 ln

1

2𝜋
−

1

2
𝑥𝑖 − 𝜇 2

3. Take the derivative: 
𝑑

𝑑𝜇
ln(ℒ(𝑥𝑖; 𝜇)) = σ𝑖=1

𝑛 𝑥𝑖 − 𝜇

𝑑

𝑑𝜇
ln(ℒ(𝑥𝑖; 𝜇)) =

𝑑

𝑑𝜇
σ𝑖=1

𝑛 ln
1

2𝜋
−

1

2
𝑥𝑖 − 𝜇 2 = σ𝑖=1

𝑛 (
𝑑

𝑑𝜇
(ln

1

2𝜋
) −

𝑑

𝑑𝜇
(

1

2
𝑑 𝑥𝑖 − 𝜇 2)) 

                       = σ𝑖=1
𝑛 − (

1

2
⋅ 2 ⋅ −1 𝑥𝑖 − 𝜇 ) = σ𝑖=1

𝑛 𝑥𝑖 − 𝜇



Example: MLE on Continuous Normal

Suppose you get values 𝑥1, 𝑥2, … 𝑥𝑛 from independent draws of a normal 
random variable 𝒩(𝜇, 1)  (for an unknown 𝜇)

We’ll also call these “realizations” of the random variable.

1. Write the likelihood function: ℒ(𝑥𝑖; 𝜇) = ς𝑖=1
𝑛 1

2𝜋
𝑒

−
1

2
𝑥𝑖−𝜇 2

2. Take the log of the likelihood ln(ℒ(𝑥𝑖; 𝜇)) = σ𝑖=1
𝑛 ln

1

2𝜋
−

1

2
𝑥𝑖 − 𝜇 2

3. Take the derivative: 
𝑑

𝑑𝜇
ln(ℒ(𝑥𝑖; 𝜇)) = σ𝑖=1

𝑛 𝑥𝑖 − 𝜇

4. Set to 0 and solve: σ𝑖=1
𝑛 𝑥𝑖 − Ƹ𝜇 = 0 ⇒ σ𝑖=1

𝑛 𝑥𝑖 = Ƹ𝜇 ⋅ 𝑛 ⇒ Ƹ𝜇 =
σ𝑖=1

𝑛 𝑥𝑖

𝑛



Example: MLE on Continuous Normal

Suppose you get values 𝑥1, 𝑥2, … 𝑥𝑛 from independent draws of a normal 
random variable 𝒩(𝜇, 1)  (for an unknown 𝜇)

We’ll also call these “realizations” of the random variable.

1. Write the likelihood function: ℒ(𝑥𝑖; 𝜇) = ς𝑖=1
𝑛 1

2𝜋
𝑒

−
1

2
𝑥𝑖−𝜇 2

2. Take the log of the likelihood ln(ℒ(𝑥𝑖; 𝜇)) = σ𝑖=1
𝑛 ln

1

2𝜋
−

1

2
𝑥𝑖 − 𝜇 2

3. Take the derivative: 
𝑑

𝑑𝜇
ln(ℒ(𝑥𝑖; 𝜇)) = σ𝑖=1

𝑛 𝑥𝑖 − 𝜇

4. Set to 0 and solve: σ𝑖=1
𝑛 𝑥𝑖 − Ƹ𝜇 = 0 ⇒ σ𝑖=1

𝑛 𝑥𝑖 = Ƹ𝜇 ⋅ 𝑛 ⇒ Ƹ𝜇 =
σ𝑖=1

𝑛 𝑥𝑖

𝑛

5. Second derivative test: 
𝑑2

𝑑𝜇2 ln(ℒ) = −𝑛. Second derivative is negative 

everywhere, so log-likelihood is concave down and this is a maximizer.



MLEs with Multiple Parameters



Solving MLE with 2 parameters 

There’s a distribution with some unknown parameters θ1, 𝜃2. There are 
independent observations 𝑥1, 𝑥2, … , 𝑥𝑛 from this distribution.

To find the MLEs θ1 and θ2
1. Write the likelihood function: ℒ 𝑥1, … , 𝑥𝑛; 𝜃1, 𝜃2
    the likelihood function will now be in terms of 𝜃1 and 𝜃2

2. Take the log 𝒍𝒏(. . ) of the likelihood function 

3. Take the derivatives of the log-likelihood function
There are 2 parameters, so take the partial derivative with 
respect to 𝜃1 and the partial derivative with respect to 𝜃2

4. Set the derivatives to 0, and solve for the MLE 𝜽𝟏, 𝜽𝟐 
     remember to switch from 𝜃 to 𝜃 in this step because we’re now solving for the MLE

5. Verify it is a maximum with second derivative test (not required for 312)

θ1

θ2

ln 𝑥; 𝜃1, 𝜃2



Example: Generalizing Normals

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and variance of a normal 
distribution. We get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛 from the distribution. 
Find the MLEs for 𝜃𝜇and 𝜃𝜎2 . 

1. Likelihood function: ℒ 𝑥1, … , 𝑥𝑛; 𝜃𝜇 , 𝜃𝜎2 = 



Example: Generalizing Normals

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and variance of a normal 
distribution. We get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛 from the distribution.

1. Likelihood function: ℒ 𝑥1, … , 𝑥𝑛; 𝜃𝜇 , 𝜃𝜎2 = ς𝑖=1
𝑛 1

𝜃𝜎22𝜋
e

−
1

2
⋅

𝑥𝑖−𝜃𝜇
2

𝜃
𝜎2 



Example: Generalizing Normals

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and variance of a normal 
distribution. We get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛 from the distribution.

1. Likelihood function: ℒ 𝑥1, … , 𝑥𝑛; 𝜃𝜇 , 𝜃𝜎2 = ς𝑖=1
𝑛 1

𝜃𝜎22𝜋
e

−
1

2
⋅

𝑥𝑖−𝜃𝜇
2

𝜃
𝜎2 

2. Log-likelihood: ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = −
𝑛

2
ln 𝜃𝜎2 −

𝑛⋅ln 2𝜋

2
−

1

2𝜃𝜎2
σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = σ𝑖=1
𝑛 ln

1

𝜃𝜎22𝜋
−

1

2
⋅

𝑥𝑖−𝜃𝜇
2

𝜃𝜎2
 

                             = σ𝑖=1
𝑛 −

1

2
ln 𝜃𝜎2 −

1

2
ln(2𝜋) −

1

2
⋅

𝑥𝑖−𝜃𝜇
2

𝜃𝜎2
 

                                     = −
𝑛

2
ln 𝜃𝜎2 −

𝑛⋅ln 2𝜋

2
−

1

2𝜃𝜎2
σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2



Example: Generalizing Normals

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and variance of a normal 
distribution. We get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛 from the distribution.

1. Likelihood function: ℒ 𝑥1, … , 𝑥𝑛; 𝜃𝜇 , 𝜃𝜎2 = ς𝑖=1
𝑛 1

𝜃𝜎22𝜋
e

−
1

2
⋅

𝑥𝑖−𝜃𝜇
2

𝜃
𝜎2 

2. Log-likelihood: ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = −
𝑛

2
ln 𝜃𝜎2 −

𝑛⋅ln 2𝜋

2
−

1

2𝜃𝜎2
σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

3. Take the derivatives:

    Partial derivative w.r.t 𝜃𝜇: 
𝜕

𝜕𝜃𝜇
ln ℒ . . = 

see next slide… 



Example: Generalizing Normals

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and variance of a normal 
distribution. We get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛 from the distribution.

1. Likelihood function: ℒ 𝑥1, … , 𝑥𝑛; 𝜃𝜇 , 𝜃𝜎2 = ς𝑖=1
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2. Log-likelihood: ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = −
𝑛

2
ln 𝜃𝜎2 −

𝑛⋅ln 2𝜋

2
−

1

2𝜃𝜎2
σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

3. Take the derivatives:

    Partial derivative w.r.t 𝜃𝜎2 : 
𝜕

𝜕𝜃𝜎2
ln ℒ(. . ) = 

see next slide… 



Example: Generalizing Normals

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and variance of a normal 
distribution. We get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛 from the distribution.
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2. Log-likelihood: ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = −
𝑛

2
ln 𝜃𝜎2 −

𝑛⋅ln 2𝜋

2
−

1

2𝜃𝜎2
σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

3. Take the derivatives:

    Partial derivative w.r.t 𝜃𝜇: 
𝜕

𝜕𝜃𝜇
ln ℒ . . = σ𝑖=1

𝑛 𝑥𝑖−𝜃𝜇

𝜃𝜎2

    Partial derivative w.r.t 𝜃𝜎2 : 
𝜕

𝜕𝜃𝜎2
ln ℒ(. . ) = −

𝑛

2𝜃𝜎2
+

1

2 𝜃𝜎2
2 σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

see next slide… 



Example: Generalizing Normals

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and variance of a normal 
distribution. We get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛 from the distribution.

…

3. Take the derivatives:

    Partial derivative w.r.t 𝜃𝜇: 
𝜕

𝜕𝜃𝜇
ln ℒ . . = σ𝑖=1

𝑛 𝑥𝑖−𝜃𝜇

𝜃𝜎2

    Partial derivative w.r.t 𝜃𝜎2 : 
𝜕

𝜕𝜃𝜎2
ln ℒ(. . = −

𝑛

2𝜃𝜎2
+

1

2 𝜃𝜎2
2 σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

4. Set to 0 and solve the system of equations for 𝜃𝜇 and 𝜃𝜎2 :  

    σ𝑖=1
𝑛 𝑥𝑖− 𝜃𝜇

𝜃𝜎2
= 0 and −

𝑛

2 𝜃𝜎2
+

1

2 𝜃𝜎2
2 σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

= 0 

    after a bunch of algebra… 𝜃𝜇 =
σ𝑖=1

𝑛 𝑥𝑖

𝑛
 and 𝜃𝜎2 =

1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 −
σ𝑖=1

𝑛 𝑥𝑖

𝑛

2



Example: Generalizing Normals - Summary

If you get independent samples 𝑥1, 𝑥2, … , 𝑥𝑛 from a 𝒩(𝜇, 𝜎2) where 𝜇 
and 𝜎2are unknown, the maximum likelihood estimates of the normal is:

𝜃𝜇 =
σ𝑖=1

𝑛 𝑥𝑖

𝑛
  and 𝜃𝜎2 =

1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 −
σ𝑖=1

𝑛 𝑥𝑖

𝑛

2

The MLE of the mean (𝜃𝜇) is the sample mean that is the estimate of 𝜇 is 
the average value of all the data points.

The MLE for the variance is population variance: compute that average 
squared distance the observed samples are away from the sample mean



General MLE Process

There’s a distribution with some unknown parameter(s) 𝜃. There are 
independent observations 𝑥1, 𝑥2, … , 𝑥𝑛 from this distribution.

1. Write the likelihood function: ℒ 𝑥1, … , 𝑥𝑛; 𝜃
    multiply the probability/density of seeing each of those observations, based on
    the value of 𝜃(s)

2. Take the log 𝒍𝒏(. . ) of the likelihood function 

3. Take the derivative(s) of the log-likelihood function
If 2 parameters, take the partial derivative w.r.t 𝜃1 and the partial derivative w.r.t 𝜃2

4. Set the derivatives to 0, and solve for the MLE(s) 𝜽
     remember to switch from 𝜃 to 𝜃 in this step because we’re now solving for the MLE

5. Verify it is a maximum with second derivative test (not required for 312)



Properties of Estimators
How to we tell whether an estimator is “good”? 



Biased

When we created our estimator, we based it off of a particular set of 
observed data. But was this data biased? Is the estimator generalizable? 

So, one property we want from an estimator is for it to be unbiased.

The expectation is taken over the randomness in the samples we drew.
The formula is fixed, the data we draw to evaluate the formula becomes the source of 
the randomness. We redefine each observed sample as random variables. 

We’re checking, “on average over many samples, is our estimator correct?” 

An estimator መ𝜃 is “unbiased” if

𝔼 መ𝜃 = 𝜃



Biased

If an estimator isn’t unbiased then it’s biased.

Bias መ𝜃, 𝜃 = 0 --> unbiased ☺ 

Bias መ𝜃, 𝜃 > 0 --> overestimate  

Bias መ𝜃, 𝜃 < 0 --> underestimate 

The “bias” of an estimator መ𝜃 is

Bias መ𝜃, 𝜃 = 𝔼 መ𝜃 − 𝜃



Biased

If an estimator isn’t unbiased then it’s biased.

Bias መ𝜃, 𝜃 = 0 --> unbiased ☺ 

Bias መ𝜃, 𝜃 > 0 --> overestimate  

Bias መ𝜃, 𝜃 < 0 --> underestimate 

The “bias” of an estimator መ𝜃 is

Bias መ𝜃, 𝜃 = 𝔼 መ𝜃 − 𝜃

Sometimes we can “fix” an estimator to be unbiased by 

adding/multiplying a constant to መ𝜃 to make Bias መ𝜃, 𝜃 = 0 



Are our MLEs biased?

Example: MLE for mean of normal distribution

Each observed 𝑥𝑖 is a samples from 𝒩(𝜇, 𝜎2). Let 𝑋𝑖~𝒩(𝜇, 𝜎2). 

In general, our MLE is computed as: 𝜃𝜇 =
σ𝑖=1

𝑛 𝑋𝑖

𝑛

𝔼 𝜃𝜇 = 𝔼
σ𝑖=1

𝑛 𝑋𝑖

𝑛
=

We aim to evaluate the performance of our estimator on average. Instead of 
focusing on our specific data set, we define random variables representing the 
distribution from which each sample is drawn.



Are our MLEs biased?

Example: MLE for mean of normal distribution

Each observed 𝑥𝑖 is a samples from 𝒩(𝜇, 𝜎2). Let 𝑋𝑖~𝒩(𝜇, 𝜎2). 

In general, our MLE is computed as: 𝜃𝜇 =
σ𝑖=1

𝑛 𝑋𝑖

𝑛

𝔼 𝜃𝜇 = 𝔼
σ𝑖=1

𝑛 𝑋𝑖

𝑛
=

1

𝑛
𝔼 σ𝑖=1

𝑛 𝑋𝑖 =
1

𝑛
σ𝑖=1

𝑛 𝔼 𝑋𝑖 =
1

𝑛
⋅ 𝑛 ⋅ 𝜇 = 𝜇

Unbiased! 

We aim to evaluate the performance of our estimator on average. Instead of 
focusing on our specific data set, we define random variables representing the 
distribution from which each sample is drawn.



Are our MLEs biased?

Example: MLE for probability of heads on a coin flip (𝜽)

Each observed coin toss 𝑥𝑖 is a sample from Ber(𝜃). Let 𝑋𝑖~Ber(𝜃). 

In general, our MLE is computed as: መ𝜃 =
num heads

total flips
=

 

𝔼 መ𝜃 =

We aim to evaluate the performance of our estimator on average. Instead of 
focusing on our specific data set, we define random variables representing the 
distribution from which each sample is drawn.

pollev.com/cse312



Are our MLEs biased?

Example: MLE for probability of heads on a coin flip (𝜽)

Each observed coin toss 𝑥𝑖 is a sample from Ber(𝜃). Let 𝑋𝑖~Ber(𝜃). 

In general, our MLE is computed as: መ𝜃 =
num heads

total flips
=

σ𝑖
𝑛 𝑋𝑖

𝑛

𝔼 መ𝜃 = 𝔼
σ𝑖

𝑛 𝑋𝑖

𝑛
=

1

𝑛
𝔼 σ𝑖

𝑛 𝑋𝑖 =
1

𝑛
σ𝑖

𝑛 𝔼[𝑋𝑖] =
1

𝑛
σ𝑖

𝑛 𝜃 =
1

𝑛
⋅ 𝑛 ⋅ 𝜃 = 𝜃

Unbiased! 

We aim to evaluate the performance of our estimator on average. Instead of 
focusing on our specific data set, we define random variables representing the 
distribution from which each sample is drawn.



Are our MLEs biased?

Example: MLE for variance of normal distribution

Each observed 𝑥𝑖 is a samples from 𝒩(𝜇, 𝜎2). Let 𝑋𝑖~𝒩(𝜇, 𝜎2). 

In general, our MLE is computed as: 𝜃𝜎2 =
1

𝑛
σ𝑖=1

𝑛 𝑋𝑖 − 𝜃𝜇
2

]

𝔼 𝜃𝜎2 =
1

𝑛
𝔼 σ𝑖=1

𝑛 𝑋𝑖 − 𝜃𝜇
2

=… an algebraic miracle … =
𝑛−1

𝑛
⋅ 𝜎2

Unbiased! 

We aim to evaluate the performance of our estimator on average. Instead of 
focusing on our specific data set, we define random variables representing the 
distribution from which each sample is drawn.

Intuition: 𝜃𝜇 = σ𝑋𝑖/𝑛. So when that gets squared, there are terms that 

have 𝑋𝑖𝑋𝑗 terms and 𝑋𝑖 ⋅ 𝑋𝑖  terms. The 1/𝑛 fraction of terms that are 

𝑋𝑖𝑋𝑖 decrease the variance because you can’t deviate from yourself.



That Algebraic Miracle

=
1

𝑛
𝔼 σ𝑥𝑖

2 − 2𝑥𝑖
𝜃𝜇 + 𝜃𝜇

2

=
1

𝑛
𝔼 σ𝑥𝑖

2 −
1

𝑛
𝔼 σ2𝑥𝑖

𝜃𝜇 − σ𝜃𝜇
2

=
1

𝑛
𝑛𝔼 𝑥1

2 −
1

𝑛
𝔼 2𝜃𝜇σ𝑥𝑖 − σ𝜃𝜇

2

= 𝔼 𝑥1
2 −

1

𝑛
𝔼 2𝑛𝜃𝜇

2
− 𝑛𝜃𝜇

2

= 𝔼 𝑥1
2 −

1

𝑛
𝔼 𝑛𝜃𝜇

2

= 𝔼 𝑥1
2 − 𝔼 𝜃𝜇

2

𝜃𝜇 = σ𝑥𝑖/𝑛



More of That Algebraic Miracle

𝔼 𝜃𝜇
2

= 𝔼
σ𝑥𝑖

𝑛

σ𝑥𝑖

𝑛

=
1

𝑛2 𝔼 σ𝑖≠𝑗 𝑥𝑖 ⋅ 𝑥𝑗 + σ𝑖 𝑥𝑖
2 

=
1

𝑛2 𝔼 σ𝑖≠𝑗 𝑥𝑖 ⋅ 𝑥𝑗 +
1

𝑛2 𝔼 σ𝑖 𝑥𝑖
2 

=
1

𝑛2 ⋅ 𝑛 𝑛 − 1 𝔼 𝑥1 ⋅ 𝑥2 +
1

𝑛2 𝑛𝔼[𝑥1
2]

=
𝑛−1

𝑛
𝔼 𝑥1 𝔼 𝑥1 +

1

𝑛
𝔼 𝑥1

2

This is where the 

𝑥𝑖𝑥𝑖 terms end up

These are the 

𝑥𝑖𝑥𝑖 terms.



Wrapping Up the Algebraic Miracle

𝔼 𝜃𝜎2 = 𝔼 𝑥1
2 − 𝔼 𝜃𝜇

2

Plugging in 𝔼 𝜃𝜇
2

=
𝑛−1

𝑛
𝔼 𝑥1 𝔼 𝑥1 +

1

𝑛
𝔼 𝑥1

2  we get:

𝔼 𝜃𝜎2 = 𝔼 𝑥1
2 −

𝑛−1

𝑛
𝔼 𝑥1 𝔼 𝑥1 +

1

𝑛
𝔼 𝑥1

2

= 𝔼 𝑥1
2 −

𝑛−1

𝑛
𝔼 𝑥1

2 −
1

𝑛
𝔼 𝑥1

2

=
𝑛−1

𝑛
𝔼 𝑥1

2 −
𝑛−1

𝑛
𝔼 𝑥1

2

=
𝑛−1

𝑛
Var(𝑥1)



Not Unbiased

𝔼 𝜃𝜎2 = 𝔼[
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

]

=
𝑛−1

𝑛
𝜎2

Which is not what we wanted. This is biased. But it’s not too biased…

The MLE is always consistent, but can be biased or unbiased.

An estimator መ𝜃 is “consistent” if

lim
𝑛→∞

𝔼 መ𝜃 = 𝜃



Correction

The MLE slightly underestimates the true variance.

You could correct for this! Just multiply by 
𝒏

𝒏−𝟏
.

This would give you a formula of:

𝑛

𝑛−1
⋅

1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

=
1

𝑛−1
σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2
 

𝜃𝜇 is the sample mean. 

Called the “sample variance” because it’s the variance you estimate if 
you want an (unbiased) estimate of the variance given only a sample.

If you took a statistics course, you might have learned the square root of 
this as the definition of standard deviation.



Fun Facts



What’s with the 𝑛 − 1?

Soooooooooo, why is the MLE off?

Intuition 1: when we’re comparing to the real mean, 𝑥1 doesn’t affect 
the real mean (the mean is what the mean is regardless of what you 
draw). 

But when you compare to the sample mean, 𝑥1 pulls the sample mean 
toward it, decreasing the variance a tiny bit. 

Intuition 2: We only have 𝑛 − 1 “degrees of freedom” with the mean 
and 𝑛 − 1 of the data points, you know the final data point. Only 𝑛 − 1 
of the data points have “information” the last is fixed by the sample 
mean.



Why does it matter?

When statisticians are estimating a variance from a sample, they usually 
divide by 𝑛 − 1 instead of 𝑛.

They also (with unknown variance) generally don’t use the CLT to 
estimate probabilities.

A “t-test” is used when scientists/statisticians think their data is 
approximately normal, but they don’t know the variance.

They aren’t using the Φ() table, they’re using a different table based on 
the altered variance estimates.



Why use MLEs? Are there other estimators?

If you have a prior distribution over what values of 𝜃 are likely, 
combining the idea of Bayes rule with the idea of an MLE will give you 

Maximum a posteriori probability estimation (MAP)

You pick the maximum value of ℙ(𝜃|𝐸) starting from a known prior over 
possible values of 𝜃. 

argmaxθ
ℙ(𝐸|𝜃)⋅ℙ(𝜃)

ℙ(𝐸)
= argmaxθℙ(𝐸|𝜃) ⋅ ℙ(𝜃)

ℙ(𝐸) is a constant, so the argmax is unchanged if you ignore it.

Note when prior is constant, you get MLE!
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