

MAXIMUM LIKELIHOOD ESTIMATION

Goal: derive an estimate θ^{f} for the parameter θ based on observed data

- 1. Run the experiment a bunch of times (i.e., collect many samples from the distribution) -> data
- e.g., we flip a coin that follows Ber(p) 5 times and write down the results HTTTH
- 2. Estimate the missing rules (unknown parameter(s)) based on the data
 - > Guess rules to maximize probability of the events we saw (relative to other choices of the rules).e.g., what is the value of p that makes the probability of seeing HTTTH the highest?

• •

1. DEFINE LIKELIHOOD FUNCTION

 $\mathcal{L}(E; \theta)$ is $\mathbb{P}(E)$ when the experiment is run with θ "what is probability of seeing the event E (in our case, the set of data), if the experiment is run with the parameter θ ?"

Likelihood Function: Likelihood of n observations (from discrete distribution) $\mathcal{L}(x_1, x_2, ..., x_n; \theta) = \prod_i^n \mathbb{P}(x_i; \theta)$

Coin example We ran the experiment 10 times independently. The result was HTTTHHTHHH $\mathcal{L}(HTTTHHTHHH; \theta) =$ "Probability of observing HTTTHHTHHH if θ is probability of heads on a single flip"

2. TAKE LOG OF THE LIKELIHOOD (LOG-LIKELIHOOD

The product rule is not fun!! So, take the log of the likelihood function before taking the derivative! ln(a*b)=ln(a)+ln(b)

Can we still take the max? Yes! In() is an increasing function, so

 $\operatorname{argmax}_{\theta} \ln(\mathcal{L}(\mathcal{E}; \theta)) = \operatorname{argmax}_{\theta} \mathcal{L}(\mathcal{E}; \theta)$ "the log of the likelihood will increase as the likelihood increases and vice verse, so, the value of θ that maximizes the log likelihood also maximized the likelihood"

Coin Example: $\ln(\mathcal{L}(\text{HTTTHHTHHH}; \theta)) =$

The MLE of the parameter θ is: $\hat{\theta} = \operatorname{argmax}_{\theta} \mathcal{L}(E; \theta)$

3. TAKE DERIVATIVE OF THE LOG-LIKELIHOOD

4. SET DERIVATIVE TO 0, SOLVE FOR THE MLE

5. 2ND DERIVATIVE TEST TO VERIFY MAX

$$\frac{d}{d\theta} \ln \left(\mathcal{L}(\cdot) \right) =$$

$$\frac{\partial}{\partial} - \frac{4}{1 - \hat{\theta}} = 0 =$$

 $\frac{d^2}{d\theta^2} =$

 $\ln(\theta(1 -$

We're given that there's a distribution with some unknown parameter(s) θ .

There are independent observations x1, x2,..., xn from this distribution.

To find the MLE for this unknown parameter(s) θ

1. Write the likelihood function

> multiply (not add) probabilities of seeing each of the observations based on heta

- 2. Take the log ln(..) of the likelihood function (makes the math easier)
- 3. Take the derivative of the log-likelihood function
- 4. Set the derivative to 0, and solve for the MLE $heta^{\wedge}$

> remember to switch from θ to θ in this step because we're now solving for the MLE

5. Verify it is a maximum with second derivative test (not required for 312)

X