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Announcements

> HW6 released on Wednesday, due Monday 8/12
    Longer (8 questions), so start early – you have enough to do the first 5 question



Outline

> Finish Chernoff bound example from Monday

> Union bound

> Maximum Likelihood Estimation



Tail Bounds



What’s a Tail Bound?

A tail bound (or concentration inequality) bounds the probability in the “tails” of 

the distribution. e.g., statements like ℙ 𝑋 ≥ 4 ≤ 0.8, ℙ 𝑋 ≥ 4 ≤ 0.8

We’ve seen this before! We can: 

• Compute these probabilities exactly in 
some cases

• Approximate 𝑋 as normal using CLT if 𝑋 is 
the sum of a bunch of i.i.d random variables

But what if we barely know anything about 𝑋 and it doesn’t fit into the 

frameworks we’ve learned about? Can we still make some tail bound guarantees?



Markov’s Inequality

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝐤 > 𝟎

ℙ 𝑿 ≥ 𝒌𝔼[𝑿] ≤
𝟏

𝒌

Markov’s Inequality

Two statements are equivalent. 

Left form is often easier to use. 

Right form is more intuitive.

Requirements: 

1. 𝑋 must be non-negative

2. We know the expectation of 𝑋



Chebyshev’s Inequality

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Requirements: 

1. We know the expectation of 𝑋

2. We know the variance of 𝑋



Chernoff Bound

Requirements: 

1. X is a sum of independent 
Bernoulli random variables. 

2. We know 𝔼 𝑋

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3

(Multiplicative) Chernoff Bound

LEFT TAIL RIGHT TAIL



Example: Polling (again, but better!)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ത𝑋 ≥ 0.7

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3

(Multiplicative) Chernoff Bound

LEFT TAIL RIGHT TAIL



Suppose you run a poll of 1000 people where in the true population 60% 
of the population supports you. What is the probability that the poll is 
not within 10-percentage-points of the true value?

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ത𝑋 ≥ 0.7



Example: Polling (1. bound the left tail)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

𝑋 = ∑𝑋𝑖 , where 𝑋𝑖~Ber(0.6), 𝜇 = 𝔼 𝑋 = 1000 ⋅ 0.6 = 600

ℙ
𝑋

1000
≤ 0.5 =

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −
𝛿2𝜇

2
 

Chernoff Bound (left tail)

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ഥ𝑿 ≤ 𝟎. 𝟓 + ℙ ത𝑋 ≥ 0.7



Example: Polling (1. bound the left tail)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

𝑋 = ∑𝑋𝑖 , where 𝑋𝑖~Ber(0.6), 𝜇 = 𝔼 𝑋 = 1000 ⋅ 0.6 = 600

ℙ
𝑋

1000
≤ 0.5 = ℙ(𝑋 ≤ 500)

500 = 1 − 𝛿 600 -> 𝛿 =
1

6

… = ℙ 𝑋 ≤ 1 −
1

6
𝜇 ≤ 𝑒−

1

62⋅600

2

≈ 0.0003 

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ഥ𝑿 ≤ 𝟎. 𝟓 + ℙ ത𝑋 ≥ 0.7

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −
𝛿2𝜇

2
 

Chernoff Bound (left tail)



Example: Polling (2. bound the right tail)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

𝑋 = ∑𝑋𝑖 , where 𝑋𝑖~Ber(0.6), 𝜇 = 𝔼 𝑋 = 1000 ⋅ 0.6 = 600

ℙ
𝑋

1000
≥ 0.7 =

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ഥ𝑿 ≥ 𝟎. 𝟕

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3

Chernoff Bound (right tail)

pollev.com/cse312



Example: Polling (2. bound the right tail)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

𝑋 = ∑𝑋𝑖 , where 𝑋𝑖~Ber(0.6), 𝜇 = 𝔼 𝑋 = 1000 ⋅ 0.6 = 600

ℙ
𝑋

1000
≥ 0.7 = ℙ(𝑋 ≥ 700)

700 = 1 + 𝛿 600 -> 𝛿 =
1

6

… = ℙ 𝑋 ≥ 1 +
1

6
𝜇 ≤ 𝑒−

1

62⋅600

3

≈ 0.0039 

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ഥ𝑿 ≥ 𝟎. 𝟕

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3

Chernoff Bound (right tail)



Example: Polling (3. Putting it all together)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

We want ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ത𝑋 ≥ 0.7

We know..

-> ℙ ത𝑋 ≤ 0.5 = ℙ 𝑋 ≤ 500 ≤ 0.0003 (from Chernoff bound, left tail)

-> ℙ ത𝑋 ≥ 0.7 = ℙ 𝑋 ≥ 700 ≤ 0.0039 (from Chernoff bound, right tail)
  

So, ℙ ത𝑋 − 0.6 ≥ 0.1 ≤ 0.0003 + 0.0039 = 0.0042

Less than 1%. That’s a better bound than Chebyshev gave!



Wait a Minute

This is just a binomial!
Well if all the 𝑋𝑖 have the same probability. It does work if they’re independent but 
have different distributions. But there’s bigger reasons to care…

The concentration inequality will let you control 𝑛 easily, even as a 
variable. That’s not easy with the binomial.

What happens when 𝑛 gets big?

Evaluating 20000
10000

. 5110000 ⋅.4910000 is fraught with chances for floating 

point error and other issues. Chernoff is much better.



Wait a Minute

I asked Wikipedia about the “Chernoff Bound” and I saw something 
different?

This is the “easiest to use” version of the bound. If you need something 
more precise, there are other versions. 

Why are the tails different??

The strongest/original versions of “Chernoff bounds” are symmetric (1 +
𝛿 and 1 − 𝛿 correspond), but those bounds are ugly and hard to use.

When computer scientists made the “easy to use versions”, they needed 
to use some inequalities. The numerators now have plain old 𝛿’s, instead 
of 1 + or 1 −. As part of the simplification to this version, there were 
different inequalities used so you don’t get exactly the same expression. 



But Wait! There’s More

For this class, please limit yourself to:
Markov, Chebyshev, and Chernoff, as stated in these slides…

But for your information. There’s more.

> Trying to apply Chebyshev, but only want a “one-sided” bound (and tired of 
losing that almost-factor-of-two)Try Cantelli’s Inequality

> In a position to use Chernoff, but want additive distance to the mean 
instead of multiplicative? They got one of those.

> Have a sum of independent random variables that aren’t indicators, but are 
bounded, you better believe Wikipedia’s got one

> Have a sum of random matrices instead of a sum of random numbers. Not 
only is that a thing you can do, but the eigenvalue of the matrix concentrates

There’s a whole book of these!

https://en.wikipedia.org/wiki/Cantelli%27s_inequality
https://en.wikipedia.org/wiki/Chernoff_bound#Additive_form_(absolute_error)
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality#General_case_of_bounded_random_variables
https://en.wikipedia.org/wiki/Matrix_Chernoff_bound
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/1juclfo/alma991618178901452


Tail Bounds – Takeaways 

Useful when an experiment is complicated and you just need the 
probability to be small (you don’t need the exact value).

Choosing a minimum 𝑛 for a poll – don’t need exact probability of 
failure, just to make sure it’s small.

Designing probabilistic algorithms – just need a guarantee that they’ll 
be extremely accurate 

Learning more about the situation (e.g. learning variance instead of just 
mean, knowing bounds on the support of the starting variables) usually 
lets you get more accurate bounds.



Tail Bounds – Summary 

• Markov’s inequality - ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]

𝑡
•  Use if 𝑋 is non-negative and we know the expectation

•  Useful when we don’t know much about 𝑋

• Chebyshev’s inequality - ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var t

𝑡2

•  Use if we know the expectation and variance of 𝑋

•  Gives better bounds with small variances

• Chernoff Bound

•  Use if 𝑋 is a sum of independent Bernoulli random variables 

•  Gives a very good bound usually, and is especially helpful when 𝑋 is binomial 
and we can’t easily computationally compute some summations/probability

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3



One More Bound – Union Bound



Union Bound (not a tail bound, but still a bound)

For any events 𝐸, 𝐹
ℙ 𝑬 ∪ 𝑭 ≤ ℙ 𝑬 + ℙ(𝑭)

Union Bound

Proof? 

By inclusion-exclusion, ℙ 𝐸 ∪ 𝐹 = ℙ 𝐸 + ℙ 𝐹 − ℙ(𝐸 ∩ 𝐹)

And ℙ 𝐸 ∩ 𝐹 ≥ 0.

Sometimes we don’t’ have enough 
information to compute this 
probability exactly, so we use the 
union bound to bound that 
probability



Concentration Applications

A common pattern: 

“What’s the probability something goes wrong?”

> Figure out “what could possibly go wrong” – often these are 
dependent. Use a tail bound for each of the things that could go wrong.

> Union bound over everything that could go wrong. 



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.

𝐴𝑖 is the event the 𝑖’th square has at least 36 frogs

ℙ 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ ⋯ ∪ 𝐴25
≤ ℙ 𝐴1 + ℙ 𝐴2 + ℙ 𝐴3 + ⋯ + ℙ 𝐴25    by the union bound

 How do we find ℙ(𝑨𝒊)? Use another bound! 

These events are dependent – adjacent squares affect each other! 



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.

𝐴𝑖 is the event the 𝑖’th square has at least 36 frogs

How do we find ℙ(𝑨𝒊)? Use another bound! 

Let 𝑌 be the number frogs in i’th square



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.

𝐴𝑖 is the event the 𝑖’th square has at least 36 frogs

How do we find ℙ(𝑨𝒊)? Use another bound! 

Let 𝑌 be the number frogs in i’th square
𝑌 = ∑𝑗=1

100 𝑋𝑗, Xj~Ber(1/5), 𝐸 𝑌 =
100

5
= 20 

ℙ 𝐴𝑖 = ℙ(𝑌 ≥ 36) =ℙ 𝑌 ≥ 1 +
4

5
20

≤ 𝑒 −

4
5

2
⋅20

3 ≤ 0.015 by the Chernoff bound



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.

𝐴𝑖 is the event the 𝑖’th square has at least 36 frogs

ℙ 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ ⋯ ∪ 𝐴25
≤ ℙ 𝐴1 + ℙ 𝐴2 + ℙ 𝐴3 + ⋯ + ℙ 𝐴25                  by the union bound
≤ 0.015 + 0.015 + 0.015 + ⋯ + 0.015 = 25 ⋅ 0.015 by the Chernoff bound
= 0.375 



Example: Frogs 

For an arbitrary location:

There are 100 frogs who could end up there (those above, below, left, 
right, and at that location). Each with probability .2. Let 𝑋 be the number 
that land at the location we’re interested in.

ℙ 𝑋 ≥ 36 = ℙ 𝑋 ≥ 1 + 𝛿 20 ≤ exp −
4

5

2
⋅20

3
≤ 0.015

There are 25 locations. Since all locations are symmetric, by the union 
bound the probability of at least one location having 36 or more frogs is 
at most 25 ⋅ 0.015 ≤ 0.375.



Tail Bounds – Summary 

• Markov’s inequality - ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]

𝑡
•  Use if 𝑋 is non-negative and we know the expectation

•  Useful when we don’t know much about 𝑋

• Chebyshev’s inequality - ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var t

𝑡2

•  Use if we know the expectation and variance of 𝑋
•  Gives better bounds with small variances

• Chernoff Bound

•  Use if 𝑋 is a sum of independent Bernoulli random variables 

•  Gives a very good bound usually, and is especially helpful when 𝑋 is binomial 
and we can’t easily computationally compute some summations/probability

• Union Bound - ℙ 𝐴 ∪ 𝐵 ≤ ℙ 𝐴 + ℙ(𝐵)
•Use if we don’t have enough information to find the union (e.g,. ways for at least 
of __ to occur, for A, or B, or C, or … to occur)

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3



Maximum Likelihood Estimation



Up till now…

So far, the probability questions we’ve asked have followed a pattern:

You’re given a model with the probabilities you need to make predictions.

> 𝑋~Bin(𝑛, 𝑝), compute some probabilities about 𝑋, compute 𝐸[𝑋]

> We have a distribution that takes on these outcomes with these 
probabilities. Compute the probability of some event or set of outcomes.

> Before we run the entire experiment, let’s make some predictions



Up till now…

So far, the probability questions we’ve asked have followed a pattern:

You’re given a model with the probabilities you need to make predictions.

> 𝑋~Bin(𝑛, 𝑝), compute some probabilities about 𝑋, compute 𝐸[𝑋]

> We have a distribution that takes on these outcomes with these 
probabilities. Compute the probability of some event or set of outcomes.

> Before we run the entire experiment, let’s make some predictions

In real world, we usually don’t know all the rules of a random experiment
hence tail bounds, CLT, etc. to estimate probabilities in these situations

But, can we estimate those missing rules/parameters to a distribution?



What could those “missing rules/parameters” be? 

We’re going to call the unknown parameter(s) to a distribution 𝜽

All distributions from the zoo we’ve are a distribution + parameter(s) 𝜽:  

> Ber(𝑝) --> 𝜃 = 𝑝

> Poi(𝜆)  --> 𝜃 = 𝜆

> Unif(𝑎, 𝑏) --> 𝜃 = (𝑎, 𝑏)

Some probability distributions are in terms of some unknown parameter(s) 𝜽

> e.g., 𝑋 follows the probability distribution 𝑝𝑋 𝑘 =

 
𝜃 𝑘 = 1
2𝜃 𝑘 = 2
1 − 3𝜃 𝑘 = 3
0 otherwise

Our goal is to estimate the value of 𝜃



The Remix – going backwards

Let’s say you have a coin. You don’t 
know if it’s fair or not. 

It’s reasonable to think that a coin flip 
follows a Bernoulli distribution. 

But what’s the parameter? 

In the real world, you’re not given 
parameters :( 

https://xkcd.com/2582/

https://xkcd.com/2582


The Remix – going backwards

Let’s say you have a coin. You don’t 
know if it’s fair or not. 

It’s reasonable to think that a coin flip 
follows a Bernoulli distribution. 

But what’s the parameter? 

In the real world, you’re not given 
parameters :( 

But we do have… data!

https://xkcd.com/2582/

https://xkcd.com/2582


Maximum Likelihood Estimation

We derive an estimate 𝛉 for the parameter 𝛉 based on observed data



Maximum Likelihood Estimation

We derive an estimate 𝛉 for the parameter 𝛉 based on observed data

1. We’re going to run the random experiment a bunch of times (i.e., 
collect a bunch of samples from the distribution) -> this gives data
e.g., we flip a coin that follows Ber(𝑝) 10 times and write down the results - HTTTH

2. Estimate the missing rules (unknown parameter(s)) based on the data



Maximum Likelihood Estimation

We derive an estimate 𝛉 for the parameter 𝛉 based on observed data

1. We’re going to run the random experiment a bunch of times (i.e., 
collect a bunch of samples from the distribution) -> this gives data
e.g., we flip a coin that follows Ber(𝑝) 10 times and write down the results – HTTTH…

2. Estimate the missing rules (unknown parameter(s)) based on the data

Suppose you flip a coin independently 10 times, and you see

HTTTHHTHHH
(6 heads, 4 tails)

What is your estimate of 𝑝, the probability the coin comes up heads?



Maximum Likelihood Estimation

We derive an estimate 𝛉 for the parameter 𝛉 based on observed data

1. We’re going to run the random experiment a bunch of times (i.e., 
collect a bunch of samples from the distribution) -> this gives data
e.g., we flip a coin that follows Ber(𝑝) 5 times and write down the results - HTTTH

2. Estimate the missing rules (unknown parameter(s)) based on the data

Suppose you flip a coin independently 10 times, and you see

HTTTHHTHHH
(6 heads, 4 tails)

What is your estimate of 𝑝, the probability the coin comes up heads?

Maybe p =
6

10
 (𝑋~Ber(

6

10
). But how to argue “objectively” this is the best estimate?



Maximum Likelihood Estimation

We derive an estimate 𝛉 for the parameter 𝛉 based on observed data

1. We’re going to run the random experiment a bunch of times (i.e., 
collect a bunch of samples from the distribution) -> this gives data
e.g., we flip a coin that follows Ber(𝑝) 10 times and write down the results – HTTTH…

2. Estimate the missing rules (unknown parameter(s)) based on the data



Maximum Likelihood Estimation

We derive an estimate 𝛉 for the parameter 𝛉 based on observed data

1. We’re going to run the random experiment a bunch of times (i.e., 
collect a bunch of samples from the distribution) -> this gives data
e.g., we flip a coin that follows Ber(𝑝) 10 times and write down the results – HTTTH…

2. Estimate the missing rules (unknown parameter(s)) based on the data
How do we do this? Well, we got some data - High probability events happen more 
often than low probability events. So, guess the rules that maximize the probability 
of the events we saw (relative to other choices of the rules).

e.g., what is the value of 𝑝 that makes the probability of seeing HTTTH… the highest?



Maximum Likelihood Estimation

We derive an estimate 𝛉 for the parameter 𝛉 based on observed data

1. We’re going to run the random experiment a bunch of times (i.e., 
collect a bunch of samples from the distribution) -> this gives data
e.g., we flip a coin that follows Ber(𝑝) 10 times and write down the results – HTTTH…

2. Estimate the missing rules (unknown parameter(s)) based on the data
How do we do this? Well, we got some data - High probability events happen more 
often than low probability events. So, guess the rules that maximize the probability 
of the events we saw (relative to other choices of the rules).

e.g., what is the value of 𝑝 that makes the probability of seeing HTTTH… the highest?

To do this, we will define a function that will tell us the probability of seeing 

particular data (a particular set of samples from the distribution) based on a 

particular value of the unknown parameter(s) 𝜃



Likelihood function

𝓛(𝑬; 𝜽) is ℙ(𝐸) when the experiment is run with 𝜃
“what is probability of seeing the event 𝐸 (in our case, the set of data), if the 
experiment is run with the parameter 𝜃?”

We can’t use probability notation because likelihood doesn’t follow the same rules

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃
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“what is probability of seeing the event 𝐸 (in our case, the set of data), if the 
experiment is run with the parameter 𝜃?”

We can’t use probability notation because likelihood doesn’t follow the same rules

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃

Coin example

We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 
“Probability of observing HTTTHHTHHH if 𝜽 is probability of heads on a single flip”
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We can’t use probability notation because likelihood doesn’t follow the same rules

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃
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Likelihood function
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“what is probability of seeing the event 𝐸 (in our case, the set of data), if the 
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We can’t use probability notation because likelihood doesn’t follow the same rules

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃

Coin example

We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 𝜃6 1 − 𝜃 4 (multiply because independent)

“Probability of observing HTTTHHTHHH if 𝜽 is probability of heads on a single flip”

Likelihood Function: Likelihood of 𝑛 observations (from discrete distribution)

ℒ 𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃 = Π𝑖
𝑛ℙ(𝑥𝑖; 𝜃)



Notation comparison

ℙ(𝑋|𝑌) probability of 𝑋, conditioned on the event 𝑌 having happened 
(𝑌 is a subset of the sample space).

ℙ(𝑋; 𝜃) probability of 𝑋, where to properly define our probability space 
we need to know the extra piece of information 𝜃. Since 𝜃 isn’t an event 
(it’s not a subset of the sample space), this is not conditioning.
We have a fixed model, want to find the probability of seeing some data

ℒ(𝑋; 𝜃) the likelihood of event 𝑋, given that an experiment was run with 
parameter 𝜃. Likelihoods don’t have all the properties we associate with 
probabilities (e.g. they don’t all sum up to 1) and this isn’t conditioning on 
an event (𝜃 is a parameter/rule of how the event could be generated).
We have some fixed data, we want to look at the probability of a particular model



Likelihood function

𝓛(𝑬; 𝜽) is ℙ(𝐸) when the experiment is run with 𝜃
“what is probability of seeing the event 𝐸 (in our case, the set of data), if the 
experiment is run with the parameter 𝜃?”

We can’t use probability notation because likelihood doesn’t follow the same rules

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃
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We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 𝜃6 1 − 𝜃 4 (multiply because independent)

“Probability of observing HTTTHHTHHH if 𝜽 is probability of heads on a single flip”



Likelihood function

𝓛(𝑬; 𝜽) is ℙ(𝐸) when the experiment is run with 𝜃
“what is probability of seeing the event 𝐸 (in our case, the set of data), if the 
experiment is run with the parameter 𝜃?”

We can’t use probability notation because likelihood doesn’t follow the same rules

We want to pick the value of 𝜽 that make this likelihood function the largest. So…

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃

Coin example

We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 𝜃6 1 − 𝜃 4 (multiply because independent)

“Probability of observing HTTTHHTHHH if 𝜽 is probability of heads on a single flip”



Maximum Likelihood Estimation

We will choose the estimator መ𝜃 = argmax𝜃  ℒ(𝐸; 𝜃)
“the value of 𝜃 that makes the likelihood of seeing the observed data the highest” 

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃

What is argmax? 

For example argmax𝑥 5 − x2 = 0

max
𝑥

5 − 𝑥2 = 5, the input (argument) which 

produces 5 is 0, so the argmax is 0
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“the value of 𝜃 that makes the likelihood of seeing the observed data the highest” 
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1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃

The maximum likelihood estimator of the parameter θ is:
መ𝜃 = argmax𝜃  ℒ(𝐸; 𝜃)

Maximum Likelihood Estimator



Maximum Likelihood Estimation

We will choose the estimator መ𝜃 = argmax𝜃  ℒ(𝐸; 𝜃)
“the value of 𝜃 that makes the likelihood of seeing the observed data the highest” 

Remember, our goal: 

1. Collect some data/samples from the distribution

2. Find an estimate for 𝜃

𝜃 is a variable, መ𝜃 is a number (or formula given the event).

Use መ𝜃MLE if we want to emphasize how we found the estimator.

The maximum likelihood estimator of the parameter θ is:
መ𝜃 = argmax𝜃  ℒ(𝐸; 𝜃)

Maximum Likelihood Estimator



The maximum likelihood estimator of the parameter θ is: መ𝜃 =
argmax𝜃  ℒ(𝐸; 𝜃)

Maximum Likelihood Estimator

Coin example (goal: estimate 𝜽 = 𝒑, the probability of heads on a flip)
We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 𝜃6 1 − 𝜃 4 (multiply because independent)

Now, find the value of 𝛉 that maximizes the likelihood…How do we find a max?



The maximum likelihood estimator of the parameter θ is: መ𝜃 =
argmax𝜃  ℒ(𝐸; 𝜃)

Maximum Likelihood Estimator

Coin example (goal: estimate 𝜽 = 𝒑, the probability of heads on a flip)
We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 𝜃6 1 − 𝜃 4 (multiply because independent)

Now, find the value of 𝛉 that maximizes the likelihood…How do we find a max?

Calculus!! Take the derivative of ℒ(E; θ), set to 0, and solve for θ



The maximum likelihood estimator of the parameter θ is: መ𝜃 =
argmax𝜃  ℒ(𝐸; 𝜃)

Maximum Likelihood Estimator

Coin example (goal: estimate 𝜽 = 𝒑, the probability of heads on a flip)
We ran the experiment 10 times independently. The result was HTTTHHTHHH

ℒ HTTTHHTHHH; 𝜽 = 𝜃6 1 − 𝜃 4 (multiply because independent)

Now, find the value of 𝛉 that maximizes the likelihood…How do we find a max?

Calculus!! Take the derivative of ℒ(E; θ), set to 0, and solve for θ

Take the derivative:
𝑑

𝑑𝜃
𝜃6 1 − 𝜃 4 = 6𝜃5 1 − 𝜃 4 − 4𝜃6 1 − 𝜃 3 

Set to 0 and solve: (now, we’re solving for the maximum likelihood estimator, 𝜽)

6 𝜃5 1 − 𝜃
4

− 4 𝜃6 1 − 𝜃
3

= 0 ⇒ 6 1 − 𝜃 − 4 𝜃 = 0 ⇒ −10 𝜃 = −6 ⇒ 𝜃 =
3

5
 

The MLE 𝜃 estimating the true 𝜽 = 𝒑 is 𝟑/𝟓 just like we expected! 
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The MLE 𝜃 estimating the true 𝜽 = 𝒑 is 𝟑/𝟓 just like we expected! 



Is that really the maximum?

What we really did was find the critical point (which could either be the 
maximum or the minimum), so ideally do second derivative test to check

1. Take the second derivative (the derivative of the derivative)

2. If negative everywhere around the critical point, it is the maximum

In this class, we won’t ask you to do the second derivative test, you can 
assume the solution you find is a maximum ☺ 

> to sanity check your answer, at least make sure that the estimator you 
find is valid for what you are trying to estimate



Half a step backwards…

Since the likelihood function is a product of probabilities of seeing each 
of the samples, we’re going to be taking the derivative of products a lot

The product rule is not fun!! There has to be a better way!



Half a step backwards…

Since the likelihood function is a product of probabilities of seeing each 
of the samples, we’re going to be taking the derivative of products a lot

The product rule is not fun!! There has to be a better way!

Take the log of the likelihood function before taking the derivative!

Recall: ln 𝑎 ⋅ 𝑏 = ln 𝑎 + ln product(𝑏)

And, we don’t need the product rule if our expression is a sum!

Can we still take the max? Yes! ln() is an increasing function, so

argmaxθ ln ℒ(𝐸; 𝜃) = argmaxθ ℒ 𝐸; 𝜃   
“the log of the likelihood will increase as the likelihood increases and vice verse, 
so, the value of 𝜃 that maximizes the log likelihood also maximized the likelihood”



Half a step backwards…

Since the likelihood function is a product of probabilities of seeing each 
of the samples, we’re going to be taking the derivative of products a lot

The product rule is not fun!! There has to be a better way!

Take the log of the likelihood function before taking the derivative!

Recall: ln 𝑎 ⋅ 𝑏 = ln 𝑎 + ln product(𝑏)

And, we don’t need the product rule if our expression is a sum!

Can we still take the max? Yes! ln() is an increasing function, so

argmaxθ ln ℒ(𝐸; 𝜃) = argmaxθ ℒ 𝐸; 𝜃   
“the log of the likelihood will increase as the likelihood increases and vice verse, 
so, the value of 𝜃 that maximizes the log likelihood also maximized the likelihood”

𝜃(1 − 𝜃)

ln(𝜃(1 − 𝜃)



Coin flips is easier

1. Likelihood function: ℒ(HTTTHHTHHH; 𝜃) = 𝜃6 1 − 𝜃 4

2. Take the log: ln(ℒ(HTTTHHTHHH; 𝜃) = 6 ln 𝜃 + 4 ln(1 − 𝜃)

3. Take the derivative: 
𝑑

𝑑𝜃
ln ℒ ⋅ =

6

𝜃
−

4

1−𝜃

4. Set to 𝟎 and solve:

 
6

𝜃
−

4

1−𝜃
= 0 ⇒

6

𝜃
=

4

1−𝜃
 ⇒ 6 − 6 መ𝜃 = 4 መ𝜃  ⇒ መ𝜃 =

3

5

5. Check it’s a maximum (can skip in 312) 

 
𝑑2

𝑑𝜃2 =
−6

𝜃2 −
4

1−𝜃 2 < 0 everywhere, so any critical point is a maximum.

Derivative is much easier!!



Solving MLE (the process)

We’re given that there’s a distribution with some unknown parameter(s) θ. 
There are independent observations x1, x2, … , xn from this distribution.

To find the MLE θ for this unknown parameter(s) θ….
1. Write the likelihood function 
 multiply (not add) probabilities of seeing each of the observations based on 𝜃

2. Take the log 𝒍𝒏(. . ) of the likelihood function (makes the math easier)

3. Take the derivative of the log-likelihood function

4. Set the derivative to 0, and solve for the MLE 𝜽
     remember to switch from 𝜃 to 𝜃 in this step because we’re now solving for the MLE

5. Verify it is a maximum with second derivative test (not required for 312)
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