
Catch-up/Review :D
CSE 312 24Su

Lecture 19

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Announcements

> Fill out final conflict form if you have an unavoidable conflict during 
the current final slot

> Details and resources for the final will be posted later this week/early 
next week

> Typo on current HW in 3b (net return Is -15 if the design fails) 



Where can I find more practice?

> Alex Tsun’s textbook (linked on website) has more practice

> Practice exams - practice midterms, practice finals (coming soon)

> Section handouts



Outline for today

> Review discrete vs. continuous random variables

> Normal distributions

> Practice with CLT

> Practice with discrete and continuous joint distributions

> Practice with Law of total Expectation

> we won’t review tail bounds today, you’ll get lots of practice in section 
tomorrow, and we’ll do another problem at the start on Friday! 



Discrete RVs
Support is finite/countably infinite (e.g. integers)

Probability mass function 𝑝𝑋 𝑘  gives 
probability of each value in support

Expectation: 𝔼 𝑋 = σ𝑘∈Ω𝑋
(𝑘 ⋅ 𝑝𝑋 𝑘 )

                     𝔼 𝑔(𝑋) = σ𝑘∈Ω𝑋
(𝑔(𝑘) ⋅ 𝑝𝑋 𝑘 )

Continuous RVs
Support is uncountably infinite (e.g., real numbers)

ℙ 𝑿 = 𝒌 =
𝟏

∞
= 𝟎 so we don’t use PMF. instead...

Probability density function 𝒇𝑿(𝒌) describes relative 
chances of taking values around 𝑘 

Expectation: 𝔼 𝑋 = ∞−

∞
𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

                     𝔼 𝑔(𝑋) = ∞−

∞
𝑔(𝑧) ⋅ 𝑓𝑋 𝑧  d𝑧



𝑘∈Ω𝑋

𝑝𝑋(𝑘) = 1

0 ≤ 𝑝𝑋 𝑘 ≤ 1

න
−∞

∞

𝑓𝑋(𝑘)  d𝑘 = 1

𝑓𝑋 𝑘 ≥ 0

Variance is 𝑉𝑎𝑟 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

Sum up the probabilities of values ≤ 𝑘 Integrate over values ≤ 𝑘: 𝐹𝑋 𝑘 = ∞−

𝑘
𝑓𝑋 𝑧 𝑑𝑧

Cumulative Distribution Function (CDF) is the function 𝐹𝑋 𝑘 = ℙ(𝑿 ≤ 𝒌)

Linearity of expectation and properties of expectation and variance applies in both! 



We saw three continuous RVs in the zoo…

> Uniform distribution: Unif(𝑎, 𝑏) is a random variables that takes on a 
real number uniformly at random between 𝑎 and 𝑏

> Exponential distribution: Exp(𝜆) is a random variables that tells us the 
time till the first success

> Normal distribution: 𝑁 𝜇, 𝜎2  is…



Normal Distributions



Normal Random Variable (AKA Gaussian)

There’s not a single scenario that follows a normal distribution…
But we’re going to see that it shows up in a lot of real world situations!

A normal random variable 𝑋~𝒩(𝜇, 𝜎2): 

• 𝜇 = 𝔼 𝑋  is the mean

• 𝜎2 = Var(𝑋) is the variance
  𝜎 = 𝑉𝑎𝑟 𝑋  is standard deviation

and follows this probability density function: 

𝑓𝑋 𝑘 =
1

𝜎 2𝜋
𝑒

−
𝑘−𝜇 2

2𝜎2



Normal Distributions

The CDF has no closed form, so instead, we have a table containing 
values of the CDF for a standard normal random variable 𝒩(0,1). 

To find the probability of a normal RV X~𝒩(𝜇, 𝜎2) being in some range…

1. Standardize the normal random variable: 𝑍 =
𝑋−𝜇

𝜎
 

   note: when we standardize, the numbers left are called z-scores (the number of 
   standard deviations away from the mean (e.g., ℙ(𝑍 ≥ 2) means we’re finding 
   probability of being more than 2 standard deviations away from the mean)

2. Write probability expression in terms of 𝚽 𝐳 = ℙ(Z ≤ 𝑧)

3. Look up the value(s) in the table



We have a table with precomputed values!

We have a table containing values for 

the CDF of the standard normal 

random variable 𝒁~𝒩(0,1)
> Φ is a function for CDF of 𝒩(0,1)
> Φ z = FZ z = ℙ(Z ≤ 𝑧)

AKA the “z-table”, “phi-table”



Examples

Let 𝑌~𝑁(10, 5)

What is ℙ 8 ≤ 𝑌 ≤ 12 ?

What values of 𝑐 will give ℙ 𝑌 ≥ 𝑐 ≤ 0.2?



Examples

Let 𝑌~𝑁(10, 4)

What is ℙ 12 ≤ 𝑌 ≤ 14 ?

1. Standardize: subtract the mean, divide by the standard deviation to get 𝑍~𝒩(0,1)

ℙ 8 ≤ 𝑌 ≤ 10 = ℙ
12−10

√4
≤

𝑌−10

√4
≤

14−10

√4
= ℙ

12−10

√4
≤ 𝑍 ≤

14−10

√4
= ℙ 1 ≤ 𝑍 ≤ 2  

2. Write in terms of 𝚽: ℙ 1 ≤ 𝑍 ≤ 2 = ℙ 𝑍 ≤ 2 − ℙ 𝑍 ≤ 1 = Φ 2 − Φ(1)

3. Plug into the z-table: ℙ 12 ≤ 𝑌 ≤ 14 ≈ 0.97725 − 0.84134 = 0.13591

What value of 𝒄 gives ℙ 𝑌 ≥ 𝑐 ≥ 0.7



Examples

Let 𝑌~𝑁(10, 4)

What is ℙ 12 ≤ 𝑌 ≤ 14 ?

1. Standardize: subtract the mean, divide by the standard deviation to get 𝑍~𝒩(0,1)
ℙ 8 ≤ 𝑌 ≤ 10 = ℙ

12−10

√4
≤

𝑌−10

√4
≤

14−10

√4
= ℙ

12−10

√4
≤ 𝑍 ≤

14−10

√4
= ℙ 1 ≤ 𝑍 ≤ 2  

2. Write in terms of 𝚽: ℙ 1 ≤ 𝑍 ≤ 2 = ℙ 𝑍 ≤ 2 − ℙ 𝑍 ≤ 1 = Φ 2 − Φ(1)

3. Plug into the z-table: ℙ 12 ≤ 𝑌 ≤ 14 ≈ 0.97725 − 0.84134 = 0.13591

What value of 𝒄 gives ℙ 𝑌 ≥ 𝑐 ≥ 0.7

1. Standardize: ℙ 𝑌 ≥ 𝑐 = ℙ(𝑍 ≥
𝑐−10

4
)

2. Write in terms of 𝚽: ℙ 𝑍 ≥
𝑐−10

4
= ℙ 𝑍 ≤ −

𝑐−10

4
= Φ(

𝑐−10

4
) ≥ 0.7

3. Reverse z-table lookup: Φ(−
𝑐−10

4
) ≥ 0.7 --> −

𝑐−10

4
≥ 0.53 -> 𝒄 ≥ 𝟖. 𝟗𝟒



Examples

Let 𝑌~𝑁(10, 4)

What values of 𝑐 will give ℙ |𝑌 − 10| ≥ 𝑐 ≤ 0.3?



Examples

Let 𝑌~𝑁(10, 4)

What values of 𝑐 will give ℙ |𝑌 − 10| ≥ 𝑐 ≤ 0.3?

get rid of that absolute value…ℙ |𝑌 − 10| ≥ 𝑐 = ℙ 𝑌 − 10 ≥ 𝑐 + ℙ 𝑌 − 10 ≤ −𝑐

isolate the 𝑌… ℙ 𝑌 ≥ 𝑐 + 10 + ℙ(𝑌 ≤ −𝑐 + 10)

1. Standardize

ℙ 𝑌 ≥ 𝑐 + 10 + ℙ 𝑌 ≤ −𝑐 + 10 = ℙ
𝑌−10

4
≥

𝑐+10−10

4
+ ℙ

𝑌−10

4
≤

−𝑐+10−10

4
=

= ℙ 𝑍 ≥
𝑐+10−10

4
+ ℙ 𝑍 ≤

−𝑐+10−10

4
= ℙ 𝑍 ≥

𝑐

4
+ ℙ 𝑍 ≤

−𝑐

4
 

2 Write in terms of 𝚽: ℙ 𝑍 ≥
𝑐

4
+ ℙ 𝑍 ≤

−𝑐

4
= 2 ⋅ ℙ 𝑍 ≥

𝑐

4
= 2 ⋅ 1 − Φ

𝑐

4
≤ 0.3

3. Reverse z-table lookup to solve for 𝒄: 

    2 ⋅ 1 − Φ
𝑐

4
≤ 0.3 --> Φ

𝑐

4
≥ 0.85 --> 

𝑐

4
≥ 1.4 --> 𝒄 ≥ 𝟐. 𝟖



Central Limit Theorem
Proof by double counting



What is the Central Limit Theorem?

The central limit theorem tells us that a sum of i.i.d (independent and 
identically distributed) random variables can be approximated as a 
normal distribution. This approximation gets more accurate as we sum 
more and more random variables togethers. 

If 𝑋1, 𝑋2, … , 𝑋𝑛 are i.i.d. random variables, each with mean 𝝁 and variance 𝝈𝟐 

Let 𝑌𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛

As 𝒏 → ∞, 𝒀𝒏 approaches a normal distribution 𝒩(𝒏 ⋅ 𝝁, 𝒏 ⋅ 𝝈𝟐)
(i.e., CDF of 𝒀𝒏 converges to the CDF of 𝒩(𝒏 ⋅ 𝝁, 𝒏 ⋅ 𝝈𝟐))

Central Limit Theorem



Outline of CLT steps

1. Setup the problem (e.g., 𝑋 = σ𝑖=1
𝑛 𝑋𝑖 , 𝑋𝑖 are i.i.d., and we want ℙ(𝑋 ≤ 𝑘))

   Write event you are interested in, in terms of sum of random variables.

     Apply continuity correction here if RVs are discrete.

2. Apply CLT (e.g., approx 𝑋 as 𝑌~𝑁(𝑛𝜇, 𝑛𝜎2) -> ℙ 𝑋 ≤ 𝑘 ≈ ℙ 𝑌 ≤ 𝑘
    Approximate sum of RVs as normal with appropriate mean and variance

from here, we’re working with a normal distribution, which we’ve worked with before!

3. Compute probability approximation using Phi table

     > Standardize  (𝑍 =
𝑁−𝜇

𝜎
) -> ℙ 𝑌 ≤ 𝑘 = ℙ

𝑌−𝜇

𝜎
≤

𝑘−𝜇

𝜎
= ℙ 𝑍 ≤

𝑘−𝜇

𝜎

     > Write in terms of 𝛷 𝑧 =  ℙ(Z ≤ 𝑧)

     > Look up in table



You and Bo are at an art exhibition with 100 people. Each person’s will buy one of yours and 
one of Bo’s. People buy Bo’s art with an average of $50 and a variance of $10. People buy your 
art with an average of $50 and variance of $𝑎 (depending on will you are to bargain). What does 
the your variance per art piece need to be for probability of the difference in total earnings 
between you both being more than $50 to be less than 0.10? All art purchases are independent.

1. Setup the problem (make sure to clearly define random variables, and write as a sum)

2. Apply CLT. 

3. Solve.



You and Bo are at an art exhibition with 100 people. Each person’s will buy one of yours and one 
of Bo’s. People buy Bo’s art with an average of $50 and a variance of $10. People buy your art 
with an average of $50 and variance of $𝑎 (depending on will you are to bargain). What does the 
your variance per art piece need to be for probability of the difference in total earnings between 
you both being more than $50 to be less than 0.10? All art purchases are independent.

1. Setup the problem (make sure to clearly define random variables, and write as a sum)

𝐴𝑖 is how much the i’th person spends on your art, and  𝐵𝑖 be how much they spend on Bo’s art.
Your total earnings is 𝐴 = σ𝑖=1

100 𝐴𝑖 and Bo’s total earnings is 𝐵 = σ𝑖=1
100 𝐵𝑖

The difference in earnings is 𝐷 = 𝐴 − 𝐵 = σ𝑖=1
100 𝐴𝑖 − σ𝑖=1

100 𝐵𝑖 = σ𝑖=1
100 𝐴𝑖 − 𝐵𝑖 = σ𝑖=1

100 𝐷𝑖

Our goal is: ℙ 𝐷 ≥ 50 ≤ 0.10

2. Apply CLT. 

3. Solve.



You and Bo are at an art exhibition with 100 people. Each person’s will buy one of yours and one 
of Bo’s. People buy Bo’s art with an average of $50 and a variance of $10. People buy your art 
with an average of $50 and variance of $𝑎 (depending on will you are to bargain). What does the 
your variance per art piece need to be for probability of the difference in total earnings between 
you both being more than $50 to be less than 0.10? All art purchases are independent.

1. Setup the problem (make sure to clearly define random variables, and write as a sum)

𝐴𝑖 is how much the i’th person spends on your art, and  𝐵𝑖 be how much they spend on Bo’s art.
Your total earnings is 𝐴 = σ𝑖=1

100 𝐴𝑖 and Bo’s total earnings is 𝐵 = σ𝑖=1
100 𝐵𝑖

The difference in earnings is 𝐷 = 𝐴 − 𝐵 = σ𝑖=1
100 𝐴𝑖 − σ𝑖=1

100 𝐵𝑖 = σ𝑖=1
100 𝐴𝑖 − 𝐵𝑖 = σ𝑖=1

100 𝐷𝑖

Our goal is: ℙ 𝐷 ≥ 50 ≤ 0.10

2. Apply CLT. 
Summing together 100 of 𝐴𝑖 − 𝐵𝑖  each with mean 𝜇 = 𝔼 𝐴𝑖 − 𝐵𝑖 = 𝔼 𝐴𝑖 − 𝔼 𝐵𝑖 = 50 − 50 
and variance 𝜎2 = Var 𝐴𝑖 − 𝐵𝑖 = Var 𝐴𝑖 − Var 𝐵𝑖 = 𝑎 − 10 

So, we can approximate 𝐷 = σ𝑖=1
100 𝐷𝑖 as 𝑌~𝑁(100 ⋅ 𝜇, 100 ⋅ 𝜎2), and ℙ 𝐷 ≥ 50 ≈ ℙ( 𝑌 ≥ 50)

3. Solve.
ℙ 𝑌 ≥ 50 = 



You and Bo are at an art exhibition with 100 people. Each person’s will buy one of yours and one 
of Bo’s. People buy Bo’s art with an average of $50 and a variance of $10. People buy your art 
with an average of $50 and variance of $𝑎 (depending on will you are to bargain). What does the 
your variance per art piece need to be for probability of the difference in total earnings between 
you both being more than $50 to be less than 0.10? All art purchases are independent.

1. Setup the problem (make sure to clearly define random variables, and write as a sum)

𝐴𝑖 is how much the i’th person spends on your art, and  𝐵𝑖 be how much they spend on Bo’s art.
Your total earnings is 𝐴 = σ𝑖=1

100 𝐴𝑖 and Bo’s total earnings is 𝐵 = σ𝑖=1
100 𝐵𝑖

The difference in earnings is 𝐷 = 𝐴 − 𝐵 = σ𝑖=1
100 𝐴𝑖 − σ𝑖=1

100 𝐵𝑖 = σ𝑖=1
100 𝐴𝑖 − 𝐵𝑖 = σ𝑖=1

100 𝐷𝑖

Our goal is: ℙ 𝐷 ≥ 50 ≤ 0.10

2. Apply CLT. 
Summing together 100 of 𝐴𝑖 − 𝐵𝑖  each with mean 𝜇 = 𝔼 𝐴𝑖 − 𝐵𝑖 = 𝔼 𝐴𝑖 − 𝔼 𝐵𝑖 = 50 − 50 
and variance 𝜎2 = Var 𝐴𝑖 − 𝐵𝑖 = Var 𝐴𝑖 − Var 𝐵𝑖 = 𝑎 − 10 

So, we can approximate 𝐷 = σ𝑖=1
100 𝐷𝑖 as 𝑌~𝑁(100 ⋅ 𝜇, 100 ⋅ 𝜎2), and ℙ 𝐷 ≥ 50 ≈ ℙ( 𝑌 ≥ 50)

3. Solve.

ℙ 𝑌 ≥ 50 = ℙ 𝑍 ≥
50−100⋅𝜇

100⋅𝜎2
 (standardize) = ℙ 𝑍 ≤ −

50−100⋅𝜇

100⋅𝜎2
+ ℙ 𝑍 ≥

50−100⋅𝜇

100⋅𝜎2

= 2 ⋅ ℙ 𝑍 ≥
50−100⋅𝜇

100⋅𝜎2
= 2 ⋅ (1 − Φ

50−100⋅𝜇

100⋅𝜎2
) (write in terms of 𝜱) 



You and Bo are at an art exhibition with 100 people. Each person’s will buy one of yours and one 
of Bo’s. People buy Bo’s art with an average of $50 and a variance of $10. People buy your art 
with an average of $50 and variance of $𝑎 (depending on will you are to bargain). What does the 
your variance per art piece need to be for probability of the difference in total earnings between 
you both being more than $50 to be less than 0.10? All art purchases are independent.

1. Setup the problem (make sure to clearly define random variables, and write as a sum)
…….
Our goal is: ℙ 𝐷 ≥ 50 ≤ 0.10

2. Apply CLT. 
𝜇 = 𝔼 𝐴𝑖 − 𝐵𝑖 = 𝑎 − 50 and variance 𝜎2 = Var 𝐴𝑖 − 𝐵𝑖 = 10 − 5 = 5. 
So, we can approximate 𝐷 = σ𝑖=1

100 𝐷𝑖 as 𝑌~𝑁(100 ⋅ 𝜇, 100 ⋅ 𝜎2), and ℙ 𝐷 ≥ 50 ≈ ℙ( 𝑌 ≥ 50)

3. Solve.

ℙ 𝑌 ≥ 50 = ℙ 𝑍 ≥
500−100⋅𝜇

100⋅𝜎2
 (standardize)

                         = 2 ⋅ ℙ 𝑍 ≥
50−100⋅𝜇

100⋅𝜎2
= 2 ⋅ (1 − Φ

50−100⋅𝜇

100⋅𝜎2
) (write in terms of 𝜱)

 



You and Bo are at an art exhibition with 100 people. Each person’s will buy one of yours and one 
of Bo’s. People buy Bo’s art with an average of $50 and a variance of $10. People buy your art 
with an average of $50 and variance of $𝑎 (depending on will you are to bargain). What does the 
your variance per art piece need to be for probability of the difference in total earnings between 
you both being more than $50 to be less than 0.10? All art purchases are independent.

1. Setup the problem (make sure to clearly define random variables, and write as a sum)
Our goal is: ℙ 𝐷 ≥ 50 ≤ 0.10

2. Apply CLT. 
𝜇 = 𝔼 𝐴𝑖 − 𝐵𝑖 = 𝑎 − 50 and variance 𝜎2 = Var 𝐴𝑖 − 𝐵𝑖 = 10 − 5 = 5. 
So, we can approximate 𝐷 = σ𝑖=1

100 𝐷𝑖 as 𝑌~𝑁(100 ⋅ 𝜇, 100 ⋅ 𝜎2), and ℙ 𝐷 ≥ 50 ≈ ℙ( 𝑌 ≥ 50)

3. Solve.

ℙ 𝑌 ≥ 50 = ℙ 𝑍 ≥
500−100⋅𝜇

100⋅𝜎2
 (standardize)

                         = 2 ⋅ ℙ 𝑍 ≥
50−100⋅𝜇

100⋅𝜎2
= 2 ⋅ (1 − Φ

50−100⋅𝜇

100⋅𝜎2
) (write in terms of 𝜱)

         ≤ 𝟎. 𝟏

Solve for 𝚽: 2 ⋅ 1 − Φ
50−100⋅𝜇

100⋅𝜎2
≤ 0.1 -> Φ

50−100⋅𝜇

100⋅𝜎2
≥ 0.95

Reverse z-table lookup: 
50−100⋅𝜇

100⋅𝜎2
=

50−100⋅(0)

100⋅(𝑎−10)
≥ 1.65  Algebra solving for 𝒂: 𝒂 ≥ 𝟏𝟗. 𝟐



Joint Distributions



Joint Support/Range - Ω𝑋,𝑌

We have two discrete random variables 𝑋 and 𝑌 
(that may or may not be independent)

Ω𝑋,𝑌 = 𝑎, 𝑏 ∶ 𝑝𝑋,𝑌 𝑎, 𝑏 > 0 ⊆ Ω𝑋 × Ω𝑌  

Joint PMF - 𝑝𝑋,𝑌(𝑎, 𝑏)
𝑝𝑋,𝑌 𝑎, 𝑏 = ℙ 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏  

defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Joint CDF - F𝑋,𝑌(𝑎, 𝑏)
𝐹𝑋,𝑌(𝑎, 𝑏) = ℙ 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏  

defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Normalization Property:

σ 𝑎,𝑏 ∈ΩX,Y
𝑝𝑋,𝑌(𝑎, 𝑏) = 1 

Marginal PMF - 𝑝𝑋(𝑥), 𝑝𝑌(𝑦)
𝑝𝑋 𝑥 = σ𝑦∈Ω𝑌

𝑝𝑋,𝑌(𝑥, 𝑦)
𝑝𝑌 𝑦 = σ𝑥∈Ω𝑋

𝑝𝑋,𝑌(𝑥, 𝑦) 

Joint Expectation

𝔼 𝑔 𝑋, 𝑌 =
σ 𝑎,𝑏 ∈ΩX,Y

𝑔 𝑎, 𝑏  𝑝𝑋,𝑌(𝑎, 𝑏) 

Notice we’re summing 

over what the other RV 

can be

> 𝑝𝑋,𝑌 𝑎, 𝑏 = 𝑝𝑋 𝑎 ⋅ 𝑝𝑋(𝑏) for all 𝑎, 𝑏 ∈ Ω𝑋,𝑌

> Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌

Joint Independence



Joint Support/Range - Ω𝑋,𝑌

We have two continuous random variables 𝑋 and 𝑌 
(that may or may not be independent)

Ω𝑋,𝑌 = 𝑎, 𝑏 ∶ 𝑓𝑋,𝑌 𝑎, 𝑏 > 0 ⊆ Ω𝑋 × Ω𝑌  

Joint PDF - f𝑋,𝑌(𝑎, 𝑏)
𝑓𝑋,𝑌(𝑎, 𝑏) defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Joint CDF - F𝑋,𝑌(𝑎, 𝑏)
𝐹𝑋,𝑌(𝑎, 𝑏) = ℙ 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏  

defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Normalization Property:

∞−

∞
∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 = 1 

Marginal PDF - f𝑋(𝑥), f𝑌(𝑦)
𝑓𝑋 𝑥 = ∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑦 

𝑓𝑌 𝑦 = ∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 

Joint Expectation

𝔼 𝑔 𝑋, 𝑌 =

∞−

∞
∞−

∞
𝑔 𝑥, 𝑦  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 

Notice we’re integrating 

(summing) over what the 

other RV can be

> 𝑓𝑋,𝑌 𝑎, 𝑏 = 𝑓𝑋 𝑎 ⋅ 𝑓𝑋(𝑏) for all 𝑎, 𝑏 ∈ Ω𝑋,𝑌

> Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌

Joint Independence



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

At a coffee shop, beans are stocked in a storage container each week.

Normalization Property

probabilities must sum to 1 / the density function must integrate to 1



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

σ𝑦=0
100 σ𝑥=0

𝑦
𝑐𝑦 = 1

doing a bunch of algebra…𝑐 =
1

343400 

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

0

1
0

𝑦
𝑐𝑦 𝑑𝑥 𝑑𝑦 = 1 or

0

1
𝑥

1
𝑐𝑦 𝑑𝑦 𝑑𝑥 = 1

evaluating the integral…𝑐 = 3

At a coffee shop, beans are stocked in a storage container each week.

Normalization Property

probabilities must sum to 1 / the density function must integrate to 1



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

What is 𝐹𝑋 60, 50 =                            ?

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
3𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

What is 𝐹𝑋 0.5, 0.6 =                            ?

At a coffee shop, beans are stocked in a storage container each week.

Finding probabilities (e.g., CDF)

sum/integrate over all the pairs of x and y in the desired region



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

What is 𝐹𝑋,𝑌 60, 50 = ℙ(𝑋 ≤ 60 ∩ 𝑌 ≤ 50)?

σ𝑦=0
50 σ𝑥=0

60 𝑐𝑦

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
3𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

What is 𝐹𝑋,𝑌 0.5, 0.6 = ℙ(𝑋 ≤ 0.5 ∩ 𝑌 ≤ 0.6)

0

0.6
0

0.5
3𝑦 𝑑𝑥 𝑑𝑦 = 0.27

At a coffee shop, beans are stocked in a storage container each week.

Finding probabilities (e.g., CDF)

sum/integrate over all the pairs of x and y in the desired region



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

What is 𝑝𝑋(𝑥) and 𝑝𝑌(𝑦)?

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
3𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

What is 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦)?

At a coffee shop, beans are stocked in a storage container each week.

Finding the marginal PMF’s of 𝑿 and 𝒀
use law of total probability, partitioning on the values of the other random variable



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

What is 𝑝𝑋(𝑥) and 𝑝𝑌(𝑦)?

𝑝𝑋 𝑥 = σ𝑦=𝑥
100 𝑐𝑦

𝑝𝑌 𝑦 = σ𝑥=0
𝑦

𝑐𝑦

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
3𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

What is 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦)?

𝑓𝑋 𝑥 = 𝑥

1
3𝑦  𝑑𝑦 =

32

2
−

3𝑥2

2

𝑓𝑌 𝑦 = 0

𝑦
3𝑦 𝑑𝑥 = 3𝑦2

At a coffee shop, beans are stocked in a storage container each week.

Finding the marginal PMF’s of 𝑿 and 𝒀
use law of total probability, partitioning on the values of the other random variable



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

𝔼 𝑋𝑌2 =

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
3𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

𝔼 𝑋𝑌2 =

At a coffee shop, beans are stocked in a storage container each week.

Finding the joint expectation 𝔼[𝑋𝑌2]
go through ALL pairs (x,y) in the joint support, and sum/integrate over the joint pmf * the function



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

𝔼 𝑋𝑌2 = σ𝑦=0
100 σ𝑥=0

𝑦
(𝑥𝑦2 ⋅ 𝑐𝑦) = 1

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
3𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

𝔼 𝑋𝑌2 = 0

1
0

𝑦
𝑥𝑦2 ⋅ 𝑐𝑦 𝑑𝑥 𝑑𝑦 

               = 0

1
𝑥

1
𝑥𝑦2 ⋅ 𝑐𝑦 𝑑𝑦 𝑑𝑥 

At a coffee shop, beans are stocked in a storage container each week.

Finding the joint expectation 𝔼[𝑋𝑌2]
go through ALL pairs (x,y) in the joint support, and sum/integrate over the joint pmf * the function



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

Two requirements: 

> Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌

> 𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 ⋅ 𝑝𝑌 𝑦

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
3𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

Two requirements: 

> Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌

> 𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 ⋅ 𝑓𝑌 𝑦

At a coffee shop, beans are stocked in a storage container each week.

Are 𝑿 and 𝒀 independent?

go through ALL pairs (x,y) in the joint support, and sum/integrate over the joint pmf * the function



Discrete
𝑋 is the number of coffee beans that is 
stocked at the beginning of the week.

𝑌 is the number of coffee beans used to 
make coffee in the same week.

Joint PMF: 𝑝𝑋,𝑌 𝑥, 𝑦 = ቊ
𝑐𝑦 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑦 ≤ 100
0 otherwise

Two requirements: 

> Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌 

> 𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 ⋅ 𝑝𝑌 𝑦

Continuous
𝑋 is the proportion of the container’s volume 
filled with coffee at the week’s start

𝑌 is the proportion of the container’s volume 
used to make coffee in the week. 

Joint PDF: 𝑓𝑋,𝑌 𝑥, 𝑦 = ቊ
3𝑦 if 0 ≤ 𝑥 ≤ 𝑦 ≤ 1
0 otherwise

Two requirements: 

> Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌 

> 𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 ⋅ 𝑓𝑌 𝑦

At a coffee shop, beans are stocked in a storage container each week.

Are 𝑿 and 𝒀 independent?

go through ALL pairs (x,y) in the joint support, and sum/integrate over the joint pmf * the function



Law of Total Expectation



Law of Total Expectation (LTE)

Let 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒌 be a partition of the sample space, then

 𝔼[𝑋] = 
𝑖=1

𝑛

𝔼 𝑋 𝐴𝑖 ℙ(𝐴𝑖)

Let 𝑿, 𝒀 be discrete RVs, then, 

 𝔼[𝑋] = 
𝑦∈Ω𝑌

𝔼 𝑋 𝑌 = 𝑦 ℙ(𝑌 = 𝑦)

Similar in form/idea to law of total probability, and the proof goes that 

way as well.

𝑿, 𝒀 are continuous RVs, then,

 𝔼[𝑋] = න
−∞

∞

𝔼 𝑋 𝑌 = 𝑦 𝑓𝑌(𝑦)



Reminder: conditional expectation

Everything looks the same, we’re just adding on that event we’re 

conditioning on:

𝔼 𝑋 𝐴 = 

𝑘∈Ω

𝑘 ⋅ ℙ(𝑋 = 𝑘|𝐴)

𝔼 𝑋 𝑌 = 𝑦 = σ𝑘∈Ω𝑋
𝑘 ⋅ ℙ 𝑋 = 𝑘 𝑌 = 𝑦  

 or 𝔼 𝑋 𝑌 = 𝑦 = ∞−

∞
𝑘 ⋅ 𝑓𝑋|𝑌 𝑘, 𝑦  𝑑𝑘 if continuous

Recall… 𝔼[𝑋] =
σ𝑥∈Ω 𝑥 ⋅ ℙ(𝑋 = 𝑥)

or if continuous, 
𝔼[𝑋]

= න
−∞

∞

𝑘 ⋅ 𝑓𝑋 𝑘  𝑑𝑥

𝔼 (𝑎𝑋 + 𝑏𝑌 + 𝑐) 𝐴] = 𝑎𝔼 𝑋 𝐴 + 𝑏𝔼 𝑌 𝐴 + 𝑐



Example: Elevator Rides
The number of people who enter an elevator on the ground floor is 𝑋~Poi(10). There are 𝑁 
floors above the ground floor, and each person is equally likely to get off at any of the 𝑁 
floors, independently of others.  What is the expected number of stops the elevator will 
make before discharging all the passengers?

𝑌 is the number of stops the elevator makes. What is 𝔼[𝑌]?

𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 



Example: Elevator Rides
The number of people who enter an elevator on the ground floor is 𝑋~Poi(10). There are 𝑁 
floors above the ground floor, and each person is equally likely to get off at any of the 𝑁 
floors, independently of others.  What is the expected number of stops the elevator will 
make before discharging all the passengers?

𝑌 is the number of stops the elevator makes. What is 𝔼[𝑌]?

𝔼 𝑌 = σ𝑘=0
∞ 𝔼[𝑌|𝑋 = 𝑘] ℙ 𝑋 = 𝑘 = σ𝑘=0

∞ 𝔼[𝑌|𝑋 = 𝑘] 𝑒−10 10𝑖

𝑖!

𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 

Fill out the poll everywhere: 

pollev.com/cse312



Example: Elevator Rides
The number of people who enter an elevator on the ground floor is 𝑋~Poi(10). There are 𝑁 
floors above the ground floor, and each person is equally likely to get off at any of the 𝑁 
floors, independently of others.  What is the expected number of stops the elevator will 
make before discharging all the passengers?

𝑌 is the number of stops the elevator makes. What is 𝔼[𝑌]?

𝔼 𝑌 = σ𝑘=0
∞ 𝔼[𝑌|𝑋 = 𝑘] ℙ 𝑋 = 𝑘 = σ𝑘=0

∞ 𝔼[𝑌|𝑋 = 𝑘] 𝑒−10 10𝑖

𝑖!

𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 



Example: Elevator Rides
The number of people who enter an elevator on the ground floor is 𝑋~Poi(10). There are 𝑁 
floors above the ground floor, and each person is equally likely to get off at any of the 𝑁 floors, 
independently of others.  What is the expected number of stops the elevator will make before 
discharging all the passengers?

𝑌 is the number of stops the elevator makes. What is 𝔼[𝑌]?

𝔼 𝑌 = σ𝑘=0
∞ 𝔼[𝑌|𝑋 = 𝑘] ℙ 𝑋 = 𝑘 = σ𝑘=0

∞ 𝔼[𝑌|𝑋 = 𝑘] 𝑒−10 10𝑖

𝑖!

To find 𝔼[𝑌|𝑋 = 𝑘], we will use linearity of expectation

Decompose: Let 𝑌𝑖 = ቊ
1 if stops on i′th floor
0 otherwise

  --> 𝑌 = σ𝑖
𝑁 𝑌𝑖

Apply LoE: 𝔼 𝑌 𝑋 = 𝑘 = 𝔼 σ𝑖
𝑁 𝑌𝑖 𝑋 = 𝑘 = σ𝑖

𝑁 𝔼[𝑌𝑖|𝑋 = 𝑘] = σ𝑖
𝑁 ℙ(𝑌𝑖 = 1|𝑋 = 𝑘)

Conquer: ℙ 𝑌𝑖 = 1 𝑋 = 𝑘 = 1 − ℙ 𝑌𝑖 = 0 𝑋 = 𝑘 = 1 −
𝑁−1

𝑁

k
 --> 𝔼 𝑌 𝑋 = 𝑘 = 𝑁(1 −

𝑁−1

𝑁

k
)

𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 
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