etherpad.wikimedia.org/p/312 for (anonymous) questions/comments!

Catch-up/Review:D

CSE 312 24Su Lecture 19

Announcements

- > Fill out **final conflict form** if you have an unavoidable conflict during the current final slot
- > Details and resources for the final will be posted later this week/early next week
- > Typo on current HW in 3b (net return Is -15 if the design fails)

Where can I find more practice?

- > Alex Tsun's textbook (linked on website) has more practice
- > Practice exams practice midterms, practice finals (coming soon)
- > Section handouts

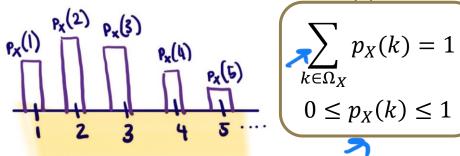
Outline for today

- > Review discrete vs. continuous random variables
- > Normal distributions
- > Practice with CLT
- > Practice with discrete and continuous joint distributions
- > Practice with Law of total Expectation
- > we won't review tail bounds today, you'll get lots of practice in section tomorrow, and we'll do another problem at the start on Friday!

Discrete RVs

Support is <u>finite/countably infinite</u> (e.g. *integers*)

Probability mass function $p_X(k)$ gives probability of each value in support

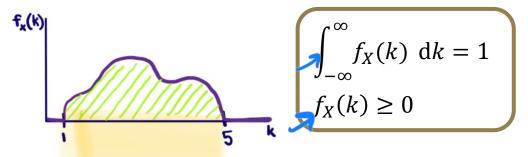


Continuous RVs

Support is <u>uncountably infinite</u> (e.g., real numbers)

$$\mathbb{P}(X = k) = \frac{1}{\infty} = 0$$
 so we don't use PMF. instead...

Probability density function $f_X(k)$ describes relative chances of taking values around k



Cumulative Distribution Function (CDF) is the function $F_X(k) = \mathbb{P}(X \leq k)$

 \underline{Sum} up the probabilities of values $\leq k$

Expectation:
$$\mathbb{E}[X] = \sum_{k \in \Omega_X} (k \cdot p_X(k))$$

 $\mathbb{E}[g(X)] = \sum_{k \in \Omega_X} (g(k) \cdot p_X(k))$

Integrate over values $\leq k$: $F_X(k) = \int_{-\infty}^k f_X(z) dz$

Expectation:
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} z \cdot f_X(z) dz$$

 $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(z) \cdot f_X(z) dz$

Variance is
$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Linearity of expectation and properties of expectation and variance applies in both!

We saw three continuous RVs in the zoo...

- > Uniform distribution: Unif(a, b) is a random variables that takes on a real number uniformly at random between a and b
- > Exponential distribution: $Exp(\lambda)$ is a random variables that tells us the time till the first success
- > Normal distribution: $N(\mu, \sigma^2)$ is...

Normal Distributions

Normal Random Variable (AKA Gaussian)

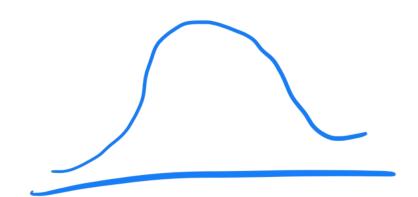
There's not a single scenario that follows a normal distribution... But we're going to see that it shows up in a lot of real world situations!

A normal random variable $X \sim \mathcal{N}(\mu, \sigma^2)$:

- $\mu = \mathbb{E}[X]$ is the mean
- $\sigma^2 = Var(X)$ is the variance $\sigma = \sqrt{Var(X)}$ is **standard deviation**

and follows this *probability density function*:

$$f_X(k) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(k-\mu)^2}{2\sigma^2}}$$



Normal Distributions

The *CDF* has no closed form, so instead, we have a table containing values of the CDF for a standard normal random variable $\mathcal{N}(0,1)$

- To find the probability of a normal RV X $\sim \mathcal{N}(\mu, \sigma^2)$ being in some range...

 1. Standardize the normal random variable: $Z = \frac{X \mu}{\sigma}$ note: when we standardize, the numbers left are called z-scores (the number of standard deviations away from the mean (e.g., $\mathbb{P}(Z \geq 2)$ means we're finding probability of being more than 2 standard deviations away from the mean)
- 2. Write probability expression in terms of $\Phi(z) = \mathbb{P}(Z \leq z)$
- 3. Look up the value(s) in the table

We have a table with precomputed values!

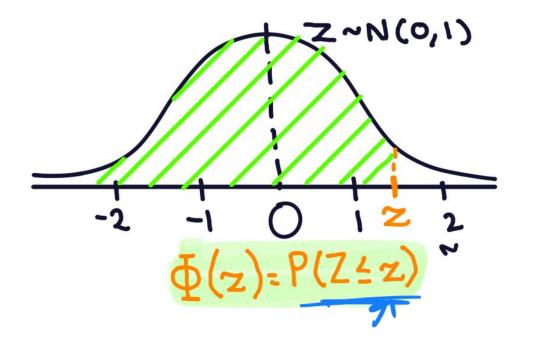
AKA the "z-table", "phi-table"

		•								
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.70884	0.71226	0.71566	0.71904	0.7224
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0 97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.9884	0.9887	0.98899
2.3	0.98928	0.98956	0.98983	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

We have a table containing values for the CDF of the standard normal random variable $Z \sim \mathcal{N}(0,1)$

 $>\Phi$ is a function for CDF of $\mathcal{N}(0,1)$

$$> \Phi(z) = F_{Z}(z) = \mathbb{P}(Z \le z)$$



```
Let Y \sim N(10,5)

What is \mathbb{P}(12 \leq Y \leq 12)?

1. Standardize P(12 - 10)

2. P(2 \leq 2) - P(2 \leq 1)

What values of c will give \mathbb{P}(Y \geq c) \leq 0.2?
```

Let $Y \sim N(10, 4)$

What is $\mathbb{P}(12 \le Y \le 14)$?

- **1. Standardize**: subtract the mean, divide by the standard deviation to get $Z \sim \mathcal{N}(0,1)$ $\mathbb{P}(8 \le Y \le 10) = \mathbb{P}\left(\frac{12-10}{\sqrt{A}} \le \frac{Y-10}{\sqrt{A}} \le \frac{14-10}{\sqrt{A}}\right) = \mathbb{P}\left(\frac{12-10}{\sqrt{A}} \le Z \le \frac{14-10}{\sqrt{A}}\right) = \mathbb{P}(1 \le Z \le 2)$
- 2. Write in terms of Φ : $\mathbb{P}(1 \le Z \le 2) = \mathbb{P}(Z \le 2) \mathbb{P}(Z \le 1) = \Phi(2) \Phi(1)$
- 3. Plug into the z-table: $\mathbb{P}(12 \le Y \le 14) \approx 0.97725 0.84134 = 0.13591$

What value of c gives $\mathbb{P}(Y \ge c) \ge 0.7$

Let $Y \sim N(10, 4)$

What is $\mathbb{P}(12 \le Y \le 14)$?

- **1. Standardize**: subtract the mean, divide by the standard deviation to get $Z \sim \mathcal{N}(0,1)$ $\mathbb{P}(8 \le Y \le 10) = \mathbb{P}\left(\frac{12-10}{\sqrt{4}} \le \frac{Y-10}{\sqrt{4}} \le \frac{14-10}{\sqrt{4}}\right) = \mathbb{P}\left(\frac{12-10}{\sqrt{4}} \le Z \le \frac{14-10}{\sqrt{4}}\right) = \mathbb{P}(1 \le Z \le 2)$
- 2. Write in terms of Φ : $\mathbb{P}(1 \le Z \le 2) = \mathbb{P}(Z \le 2) \mathbb{P}(Z \le 1) = \Phi(2) \Phi(1)$
- 3. Plug into the z-table: $\mathbb{P}(12 \le Y \le 14) \approx 0.97725 0.84134 = 0.13591$

What value of c gives $\mathbb{P}(Y \ge c) \ge 0.7$

- 1. Standardize: $\mathbb{P}(Y \ge c) = \mathbb{P}(Z \ge \frac{c-10}{\sqrt{4}})$ 2. Write in terms of Φ : $\mathbb{P}\left(Z \ge \frac{c-10}{\sqrt{4}}\right) = \mathbb{P}\left(Z \le -\frac{c-10}{\sqrt{4}}\right) = \Phi(\frac{c-10}{\sqrt{4}}) \ge 0.7$
- 3. Reverse z-table lookup: $\Phi(-\frac{c-10}{\sqrt{4}}) \ge 0.7 --> -\frac{c-10}{\sqrt{4}} \ge 0.53 -> c \ge 8.94$

Let $Y \sim N(10, 4)$

What values of c will give $\mathbb{P}(|Y-10| \ge c) \le 0.3$?

Let $Y \sim N(10, 4)$

What values of c will give $\mathbb{P}(|Y-10| \ge c) \le 0.3$?

get rid of that absolute value... $\mathbb{P}(|Y-10| \ge c) = \mathbb{P}(Y-10 \ge c) + \mathbb{P}(Y-10 \le -c)$

isolate the Y... $\mathbb{P}(Y \ge c + 10) + \mathbb{P}(Y \le -c + 10)$

1. Standardize

$$\mathbb{P}(Y \ge c + 10) + \mathbb{P}(Y \le -c + 10) = \mathbb{P}\left(\frac{Y - 10}{\sqrt{4}} \ge \frac{c + 10 - 10}{\sqrt{4}}\right) + \mathbb{P}\left(\frac{Y - 10}{\sqrt{4}} \le \frac{-c + 10 - 10}{\sqrt{4}}\right) = \mathbb{P}\left(Z \ge \frac{c + 10 - 10}{\sqrt{4}}\right) + \mathbb{P}\left(Z \le \frac{-c + 10 - 10}{\sqrt{4}}\right) = \mathbb{P}\left(Z \ge \frac{c}{\sqrt{4}}\right) + \mathbb{P}\left(Z \le \frac{-c}{\sqrt{4}}\right)$$

2 Write in terms of
$$\Phi$$
: $\mathbb{P}\left(Z \ge \frac{c}{\sqrt{4}}\right) + \mathbb{P}\left(Z \le \frac{-c}{\sqrt{4}}\right) = 2 \cdot \mathbb{P}\left(Z \ge \frac{c}{\sqrt{4}}\right) = 2 \cdot \left(1 - \Phi\left(\frac{c}{\sqrt{4}}\right)\right) \le 0.3$

3. Reverse z-table lookup to solve for *c*:

$$2 \cdot \left(1 - \Phi\left(\frac{c}{\sqrt{4}}\right)\right) \le 0.3 --> \Phi\left(\frac{c}{\sqrt{4}}\right) \ge 0.85 --> \frac{c}{\sqrt{4}} \ge 1.4 --> c \ge 2.8$$

Central Limit Theorem

Proof by couple counting

What is the Central Limit Theorem?

The **central limit theorem** tells us that a **sum of i.i.d** (independent and identically distributed) **random variables** can be **approximated** as a **normal distribution**. This approximation gets more accurate as we sum more and more random variables togethers.

Central Limit Theorem

```
If X_1, X_2, \ldots, X_n are i.i.d. random variables, each with mean \mu and variance \sigma^2 Let Y_n = X_1 + X_2 + \cdots + X_n As n \to \infty, Y_n approaches a normal distribution \mathcal{N}(n \cdot \mu, n \cdot \sigma^2) (i.e., CDF of Y_n converges to the CDF of \mathcal{N}(n \cdot \mu, n \cdot \sigma^2))
```

Outline of CLT steps

- 1. Setup the problem (e.g., $X = \sum_{i=1}^{n} X_i$, X_i are i.i.d., and we want $\mathbb{P}(X \leq k)$) Write event you are interested in, in terms of sum of random variables.
 - Apply continuity correction here if RVs are discrete.
- 2. Apply CLT (e.g., approx X as $Y \sim N(n\mu, n\sigma^2) \rightarrow \mathbb{P}(X \leq k) \approx \mathbb{P}(Y \leq k)$ Approximate sum of RVs as normal with appropriate mean and variance

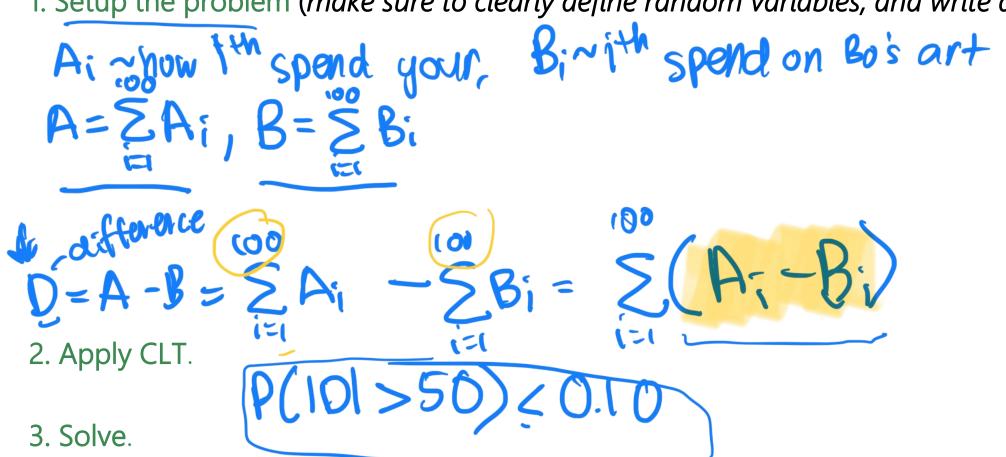
from here, we're working with a normal distribution, which we've worked with before!

3. Compute probability approximation using Phi table

> Standardize
$$(Z = \frac{N-\mu}{\sigma}) \rightarrow \mathbb{P}(Y \le k) = \mathbb{P}\left(\frac{Y-\mu}{\sigma} \le \frac{k-\mu}{\sigma}\right) = \mathbb{P}\left(Z \le \frac{k-\mu}{\sigma}\right)$$

- > Write in terms of $\Phi(z) = \mathbb{P}(\mathbb{Z} \le z)$
- > Look up in table

1. Setup the problem (make sure to clearly define random variables, and write as a sum)



1. Setup the problem (make sure to clearly define random variables, and write as a sum)

 A_i is how much the i'th person spends on your art, and B_i be how much they spend on Bo's art. Your total earnings is $A = \sum_{i=1}^{100} A_i$ and Bo's total earnings is $B = \sum_{i=1}^{100} B_i$ The difference in earnings is $D = A - B = \sum_{i=1}^{100} A_i - \sum_{i=1}^{100} B_i = \sum_{i=1}^{100} (A_i - B_i) = \sum_{i=1}^{100} D_i$ Our goal is: $\mathbb{P}(|D| \ge 50) \le 0.10$ P(101>50)&P(1Y>50) Y-N(1004,100.62) -> DXY $\mu = E[A_i - B_i] = E[A_i] - E[B_i] = 50-50=0$ 3. Solve. $\sigma^2 = Var(A_i - B_i) = Var(A_i) + Var(-B_i) = Var(A_i) + War(-B_i) = Var(A_i) + Var(-B_i) = 0$

1. Setup the problem (make sure to clearly define random variables, and write as a sum)

 A_i is how much the i'th person spends on your art, and B_i be how much they spend on Bo's art. Your total earnings is $A = \sum_{i=1}^{100} A_i$ and Bo's total earnings is $B = \sum_{i=1}^{100} B_i$ The difference in earnings is $D = A - B = \sum_{i=1}^{100} A_i - \sum_{i=1}^{100} B_i = \sum_{i=1}^{100} (A_i - B_i) = \sum_{i=1}^{100} D_i$

Our goal is: $\mathbb{P}(|D| \ge 50) \le 0.10$

2. Apply CLT.

Summing together 100 of $(A_i - B_i)$ each with mean $\mu = \mathbb{E}[A_i - B_i] = \mathbb{E}[A_i] - \mathbb{E}[B_i] = 50 - 50$ and variance $\sigma^2 = \text{Var}(A_i - B_i) = \text{Var}(A_i) - \text{Var}(B_i) = \alpha + 10$

So, we can approximate $D = \sum_{i=1}^{100} D_i$ as $Y \sim N(100 \cdot \mu, 100 \cdot \sigma^2)$, and $\mathbb{P}(|D| \geq 50) \approx \mathbb{P}(|Y| \geq 50)$

3. Solve.
$$\mathbb{P}(|Y| \ge 50) = P(|Y-100-\mu| \ge \frac{50-100-\mu}{100-0^2}) = P(|Z| \ge \frac{50-100-\mu}{100-0^2})$$

$$= P(24 - (80 - 100) + P(22))$$

$$= 2 \cdot P(2 \ge 50 - 100) + P(22)$$

$$= 2 \cdot (+ P(2 \le ...))$$

$$= 2 \cdot (-100) + P(22)$$

$$= 2 \cdot (-100) + P(22)$$

$$= 2 \cdot (-100) + P(22)$$

1. Setup the problem (make sure to clearly define random variables, and write as a sum)

 A_i is how much the i'th person spends on your art, and B_i be how much they spend on Bo's art. Your total earnings is $A = \sum_{i=1}^{100} A_i$ and Bo's total earnings is $B = \sum_{i=1}^{100} B_i$ The difference in earnings is $D = A - B = \sum_{i=1}^{100} A_i - \sum_{i=1}^{100} B_i = \sum_{i=1}^{100} (A_i - B_i) = \sum_{i=1}^{100} D_i$

Our goal is: $\mathbb{P}(|D| \ge 50) \le 0.10$

2. Apply CLT.

Summing together 100 of $(A_i - B_i)$ each with mean $\mu = \mathbb{E}[A_i - B_i] = \mathbb{E}[A_i] - \mathbb{E}[B_i] = 50 - 50$ and variance $\sigma^2 = \text{Var}(A_i - B_i) = \text{Var}(A_i) - \text{Var}(B_i) = a - 10$

So, we can approximate $D = \sum_{i=1}^{100} D_i$ as $Y \sim N(100 \cdot \mu, 100 \cdot \sigma^2)$, and $\mathbb{P}(|D| \ge 50) \approx \mathbb{P}(|Y| \ge 50)$

3. Solve.

$$\mathbb{P}(|Y| \ge 50) = \mathbb{P}\left(|Z| \ge \frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) \text{ (standardize)} = \mathbb{P}\left(Z \le -\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) + \mathbb{P}\left(Z \ge \frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right)$$
$$= 2 \cdot \mathbb{P}\left(Z \ge \frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) = 2 \cdot (1 - \Phi\left(\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right)) \text{ (write in terms of } \Phi\right)$$

1. Setup the problem (make sure to clearly define random variables, and write as a sum)

•••••

Our goal is: $\mathbb{P}(|D| \ge 50) \le 0.10$

2. Apply CLT.

$$\mu = \mathbb{E}[A_i - B_i] = a - 50$$
 and variance $\sigma^2 = \text{Var}(A_i - B_i) = 10 - 5 = 5$.
So, we can approximate $D = \sum_{i=1}^{100} D_i$ as $Y \sim N(100 \cdot \mu, 100 \cdot \sigma^2)$, and $\mathbb{P}(|D| \ge 50) \approx \mathbb{P}(|Y| \ge 50)$

3. Solve.

$$\mathbb{P}(|Y| \ge 50) = \mathbb{P}\left(|Z| \ge \frac{500 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) \text{ (standardize)}$$
$$= 2 \cdot \mathbb{P}\left(Z \ge \frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) = 2 \cdot (1 - \Phi\left(\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right)) \text{ (write in terms of } \Phi\text{)}$$

1. Setup the problem (make sure to clearly define random variables, and write as a sum) Our goal is: $\mathbb{P}(|D| \ge 50) \le 0.10$

2. Apply CLT.

$$\mu = \mathbb{E}[A_i - B_i] = a - 50$$
 and variance $\sigma^2 = \text{Var}(A_i - B_i) = 10 - 5 = 5$.
So, we can approximate $D = \sum_{i=1}^{100} D_i$ as $Y \sim N(100 \cdot \mu, 100 \cdot \sigma^2)$, and $\mathbb{P}(|D| \ge 50) \approx \mathbb{P}(|Y| \ge 50)$

3. Solve. 🗸

$$\mathbb{P}(|Y| \ge 50) = \mathbb{P}\left(|Z| \ge \frac{500 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) \text{ (standardize)}$$

$$= 2 \cdot \mathbb{P}\left(Z \ge \frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) = 2 \cdot \left(1 - \Phi\left(\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right)\right) \text{ (write in terms of } \Phi\text{)}$$

$$< 0.1$$

Solve for
$$\Phi: 2 \cdot \left(1 - \Phi\left(\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right)\right) \le 0.1 - \Phi\left(\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) \ge 0.95$$

Solve for
$$\Phi$$
: $2 \cdot \left(1 - \Phi\left(\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right)\right) \le 0.1 - > \Phi\left(\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}}\right) \ge 0.95$
Reverse z-table lookup: $\frac{50 - 100 \cdot \mu}{\sqrt{100 \cdot \sigma^2}} = \frac{50 - 100 \cdot (0)}{\sqrt{100 \cdot (a + 10)}} \ge 1.65$ Algebra solving for a : $a \ge 19.2$

Joint Distributions

We have two **discrete** random variables *X* and *Y* (that may or may not be independent)

Joint **Support/Range** - $\Omega_{X,Y}$

$$\Omega_{X,Y} = \{(a,b) : p_{X,Y}(a,b) > 0\} \subseteq \Omega_X \times \Omega_Y$$

Joint **PMF** - $p_{X,Y}(a,b)$

$$p_{X,Y}(a,b) = \mathbb{P}(X \le a, Y \le b)$$

defined for all $(a,b) \in \mathbb{R} \times \mathbb{R}$

Normalization Property:

$$\sum_{(a,b)\in\Omega_{X,Y}}p_{X,Y}(a,b)=1$$

Joint Expectation

$$\mathbb{E}[g(X,Y)] = \sum_{(a,b)\in\Omega_{XY}} g(a,b) p_{X,Y}(a,b)$$

Joint **CDF** - $F_{X,Y}(a,b)$

$$F_{X,Y}(a,b) = \mathbb{P}(X \le a, Y \le b)$$

defined for all $(a,b) \in \mathbb{R} \times \mathbb{R}$

Joint Independence

$$> p_{X,Y}(a,b) = p_X(a) \cdot p_X(b)$$
 for all $(a,b) \in \Omega_{X,Y}$

$$> \Omega_{X,Y} = \Omega_X \times \Omega_Y$$

Marginal **PMF** - $p_X(x)$, $p_Y(y)$

$$p_X(x) = \sum_{y \in \Omega_Y} p_{X,Y}(x,y)$$
$$p_Y(y) = \sum_{x \in \Omega_X} p_{X,Y}(x,y)$$

Notice we're summing over what the other RV can be

We have two **continuous** random variables *X* and *Y* (that may or may not be independent)

Joint **Support/Range** - $\Omega_{X,Y}$

$$\Omega_{X,Y} = \{(a,b) : f_{X,Y}(a,b) > 0\} \subseteq \Omega_X \times \Omega_Y$$

Joint **PDF** -
$$f_{X,Y}(a,b)$$

 $f_{X,Y}(a,b)$ defined for all $(a,b) \in \mathbb{R} \times \mathbb{R}$ $F_{X,Y}(a,b) = \mathbb{P}(X \leq a,Y \leq b)$

Joint **CDF** - $F_{X,Y}(a,b)$

defined for all $(a,b) \in \mathbb{R} \times \mathbb{R}$

Normalization Property:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

Joint **Independence**

>
$$f_{X,Y}(a,b) = f_X(a) \cdot f_X(b)$$
 for all $(a,b) \in \Omega_{X,Y}$
> $\Omega_{X,Y} = \Omega_X \times \Omega_Y$

Joint **Expectation**

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$$

Marginal **PDF** - $f_X(x)$, $f_Y(y)$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$$

Notice we're integrating (summing) over what the other RV can be

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ \hline 0 & \text{otherwise} \end{cases}$$

Continuous <

X is the proportion of the container's volume filled with coffee at the week's start

Y is the proportion of the container's volume used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ \hline & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} cy & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Normalization Property

probabilities must sum to 1 / the density function must integrate to 1

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the *proportion of the container's volume* used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} cy & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Normalization Property

probabilities must sum to 1 / the density function must integrate to 1

$$\sum_{y=0}^{100} \sum_{x=0}^{y} cy = 1$$
doing a bunch of algebra... $c = \frac{1}{343400}$

$$\int_0^1 \int_0^y cy \, dx \, dy = 1 \text{ or}$$

$$\int_0^1 \int_x^1 cy \, dy \, dx = 1$$
evaluating the integral. $c = 3$

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the *proportion of the container's volume* used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} 3y & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Finding probabilities (e.g., CDF)

sum/integrate over all the pairs of x and y in the desired region

What is
$$F_X(60, 50) = P(X \subseteq 60, Y \le 50)$$

What is
$$F_X(0.5, 0.6) =$$

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the *proportion of the container's volume* used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} 3y & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Finding probabilities (e.g., CDF)

sum/integrate over all the pairs of x and y in the desired region

What is
$$F_{X,Y}(60,50) = \mathbb{P}(X \le 60 \cap Y \le 50)$$
? What is $F_{X,Y}(0.5,0.6) = \mathbb{P}(X \le 0.5 \cap Y \le 0.6)$

$$\sum_{y=0}^{50} \sum_{x=0}^{60} cy$$

$$\int_0^{0.6} \int_0^{0.5} 3y \, dx \, dy = 0.27$$

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the proportion of the container's volume used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} 3y & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

use law of total probability, partitioning on the values of the other random variable

What is $p_X(x)$ and $p_Y(y)$?

What is $f_X(x)$ and $f_Y(y)$?

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the *proportion of the container's volume* used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} 3y & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Finding the *marginal* PMF's of *X* and *Y*

use law of total probability, partitioning on the values of the other random variable

What is $p_X(x)$ and $p_Y(y)$?

$$p_X(x) = \sum_{y=x}^{100} cy$$

$$p_Y(y) = \sum_{x=0}^{y} cy$$

$$p_Y(y) = \sum_{x=0}^{y} cy$$

What is $f_X(x)$ and $f_Y(y)$?

$$f_X(x) = \int_{x}^{1} 3y \, dy = \frac{3^2}{2} - \frac{3x^2}{2}$$
$$f_Y(y) = \int_{0}^{y} 3y \, dx = 3y^2$$

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the *proportion of the container's volume* used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} 3y & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Finding the *joint expectation* $\mathbb{E}[XY^2]$

go through ALL pairs (x,y) in the joint support, and sum/integrate over the joint pmf * the function

$$\mathbb{E}[XY^2] =$$

$$\mathbb{E}[XY^2] =$$

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the *proportion of the container's volume* used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} 3y & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Finding the *joint expectation* $\mathbb{E}[XY^2]$

go through ALL pairs (x,y) in the joint support, and sum/integrate over the joint pmf * the function

$$\mathbb{E}[XY^2] = \sum_{y=0}^{100} \sum_{x=0}^{y} (xy^2 \cdot cy) = 1$$

$$\mathbb{E}[XY^2] = \int_0^1 \int_0^y xy^2 \cdot cy \, dx \, dy$$
$$= \int_0^1 \int_x^1 xy^2 \cdot cy \, dy \, dx$$

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the *proportion* of the container's volume used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} 3y & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Are *X* and *Y* independent?

go through ALL pairs (x,y) in the joint support, and sum/integrate over the joint pmf * the function

Two requirements:

$$> \Omega_{X,Y} = \Omega_X \times \Omega_Y$$

$$> p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

Two requirements:

$$> \Omega_{X,Y} = \Omega_X \times \Omega_Y$$

$$> f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

Discrete

X is the *number of coffee beans* that is stocked at the beginning of the week.

Y is the *number of coffee beans* used to make coffee in the same week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Continuous

X is the proportion of the container's volume filled with coffee at the week's start

Y is the *proportion of the container's volume* used to make coffee in the week.

Joint PMF:
$$p_{X,Y}(x,y) = \begin{cases} cy & x,y \in \mathbb{N}, 0 \le x \le y \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 Joint PDF: $f_{X,Y}(x,y) = \begin{cases} 3y & \text{if } 0 \le x \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$

Are X and Y independent?

go through ALL pairs (x,y) in the joint support, and sum/integrate over the joint pmf * the function

Two requirements:

$$> \Omega_{X,Y} = \Omega_X \times \Omega_Y \times$$

$$> p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

Two requirements:

$$> \Omega_{X,Y} = \Omega_X \times \Omega_Y \times$$

$$> f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

Law of Total Expectation

Law of Total Expectation (LTE)

Let $A_1, A_2, ..., A_k$ be a partition of the sample space, then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i] \mathbb{P}(A_i)$$

Let X, Y be discrete RVs, then,

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X|Y = y] \mathbb{P}(Y = y)$$

X, Y are continuous RVs, then,

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X|Y = y] f_Y(y)$$

Similar in form/idea to *law of total probability*, and the proof goes that way as well.

Reminder: conditional expectation

Everything looks the same, we're just adding on that event we're conditioning on:

$$\mathbb{E}[X|A] = \sum_{k \in \Omega} k \cdot \mathbb{P}(X = k|A)$$

$$\mathbb{E}[X|Y=y] = \sum_{k \in \Omega_X} k \cdot \mathbb{P}(X=k|Y=y)$$
 or
$$\mathbb{E}[X|Y=y] = \int_{-\infty}^{\infty} k \cdot f_{X|Y}(k,y) \ dk \text{ if continuous}$$

Recall...
$$\mathbb{E}[X] = \sum_{x \in \Omega} x \cdot \mathbb{P}(X = x)$$

or if continuous,
 $\mathbb{E}[X]$
 $= \int_{-\infty}^{\infty} k \cdot f_X(k) dx$

$$\mathbb{E}[(aX + bY + c) | A] = a\mathbb{E}[X|A] + b\mathbb{E}[Y|A] + c$$

The number of people who enter an elevator on the ground floor is $X \sim Poi(10)$. There are N floors above the ground floor, and each person is equally likely to get off at any of the N floors, independently of others. What is the **expected number of stops the elevator will** make before discharging all the passengers?

Y is the number of stops the elevator makes. What is $\mathbb{E}[Y]$?

Y depends on what the value of X is. So, use LTE, partitioning on X.

The number of people who enter an elevator on the ground floor is $X \sim Poi(10)$. There are N floors above the ground floor, and each person is equally likely to get off at any of the N floors, independently of others. What is the **expected number of stops the elevator will** make before discharging all the passengers?

Y is the number of stops the elevator makes. What is $\mathbb{E}[Y]$?

Y depends on what the value of X is. So, use LTE, partitioning on X.

$$\mathbb{E}[Y] = \sum_{k=0}^{\infty} \mathbb{E}[Y|X=k] \, \mathbb{P}(X=k) = \sum_{k=0}^{\infty} \mathbb{E}[Y|X=k] \, e^{-10} \, \frac{10^{t}}{t!}$$

Fill out the poll everywhere: pollev.com/cse312

The number of people who enter an elevator on the ground floor is $X \sim Poi(10)$. There are N floors above the ground floor, and each person is equally likely to get off at any of the N floors, independently of others. What is the **expected number of stops the elevator will** make before discharging all the passengers?

Y is the number of stops the elevator makes. What is $\mathbb{E}[Y]$?

Y depends on what the value of X is. So, use LTE, partitioning on X.

$$\mathbb{E}[Y] = \sum_{k=0}^{\infty} \mathbb{E}[Y|X=k] \, \mathbb{P}(X=k) = \sum_{k=0}^{\infty} \mathbb{E}[Y|X=k] \, e^{-10} \, \frac{10^{i}}{i!}$$

The number of people who enter an elevator on the ground floor is $X \sim Poi(10)$. There are N floors above the ground floor, and each person is equally likely to get off at any of the N floors, independently of others. What is the expected number of stops the elevator will make before discharging all the passengers?

Y is the number of stops the elevator makes. What is $\mathbb{E}[Y]$?

Y depends on what the value of X is. So, use LTE, partitioning on X.

$$\mathbb{E}[Y] = \sum_{k=0}^{\infty} \mathbb{E}[Y|X=k] \, \mathbb{P}(X=k) = \sum_{k=0}^{\infty} \mathbb{E}[Y|X=k] \, e^{-10} \, \frac{10^{l}}{i!}$$

To find $\mathbb{E}[Y|X=k]$, we will use *linearity of expectation*

Decompose: Let
$$Y_i = \begin{cases} 1 & \text{if stops on i'th floor} \\ 0 & \text{otherwise} \end{cases}$$
 $--> Y = \sum_i^N Y_i$

Apply LoE:
$$\mathbb{E}[Y|X=k] = \mathbb{E}\left[\sum_{i=1}^{N} Y_i \mid X=k\right] = \sum_{i=1}^{N} \mathbb{E}[Y_i \mid X=k] = \sum_{i=1}^{N} \mathbb{P}(Y_i=1 \mid X=k)$$

Conquer:
$$\mathbb{P}(Y_i = 1 | X = k) = 1 - \mathbb{P}(Y_i = 0 | X = k) = 1 - \left(\frac{N-1}{N}\right)^k --> \mathbb{E}[Y | X = k] = N(1 - \left(\frac{N-1}{N}\right)^k)$$