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etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Announcements

> Reminder about concept checks 14, 15, 16 late due date tonight

> Review/breather lecture on Wednesday, fill out form for requested 
topics/questions



What’s a Tail Bound?

A tail bound (or concentration inequality) bounds the probability in the “tails” of 

the distribution. e.g., statements like ℙ 𝑋 ≥ 4 ≤ 0.8, ℙ 𝑋 ≥ 4 ≤ 0.8

We’ve seen this before! We can: 

• Compute these probabilities exactly in 
some cases

• Approximate 𝑋 as normal using CLT if 𝑋 is 
the sum of a bunch of i.i.d random variables

But what if we barely know anything about 𝑋 and it doesn’t fit into the 

frameworks we’ve learned about? Can we still make some tail bound guarantees?



Upper vs. Lower Bound

If we find something like ℙ 𝐴 ≤ 𝑏, we found an upper bound
This highest/”uppermost” value the probability of 𝐴 could be is 𝑏

If we find something like ℙ 𝐴 ≥ 𝑏, we found a lower bound
This lowest/smallest value the probability of 𝐴 could be is 𝑏



Tail Bounds

We’re going to learn about 3 tail bounds that we can use when all we 
know about 𝑋 is it’s expected value and/or variance: 

• Markov’s Inequality 

• Chebyshev’s Inequality

• Chernoff Bound 

And….

• The union bound is not a tail bound, but we’ll still talk about it :) 



Markov’s Inequality

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝐤 > 𝟎

ℙ 𝑿 ≥ 𝒌𝔼[𝑿] ≤
𝟏

𝒌

Markov’s Inequality

Two statements are equivalent. 

Left form is often easier to use. 

Right form is more intuitive.

Requirements: 

1. 𝑋 must be non-negative

2. We know the expectation of 𝑋





Proof

𝔼 𝑋 = 𝔼 𝑋 𝑋 < 𝑡 ℙ 𝑋 < 𝑡 + 𝔼 𝑋 𝑋 ≥ 𝑡 ℙ 𝑋 ≥ 𝑡

         ≥ 𝔼 𝑋 𝑋 ≥ 𝑡 ℙ 𝑋 ≥ 𝑡

         ≥ 𝑡 ⋅ ℙ 𝑋 ≥ 𝑡

Doing some algebra…we get exactly
what’s in Markov’s inequality! → 

𝔼 X X ≥ t ℙ X ≥ t ≥ 0 if X is non-negative 

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

𝔼 𝑋 ≥ 𝑡 ⋅ ℙ(𝑋 ≥ 𝑡)



Example: Let’s see how good this bound is…

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. Bound the probability that 𝑋 ≥ 12.

𝑋~Geo
1

6
, so 𝔼 𝑋 = 1/(

1

6
) = 6

Applying Markov’s Inequality…

ℙ 𝑋 ≥ 12  

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: Let’s see how good this bound is…

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. Bound the probability that 𝑋 ≥ 12.

𝑋~Geo
1

6
, so 𝔼 𝑋 = 1/(

1

6
) = 6

Applying Markov’s Inequality…

ℙ 𝑋 ≥ 12 ≤
𝔼 𝑋

12
=

6

12
=

1

2
Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: Let’s see how good this bound is…

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. Bound the probability that 𝑋 ≥ 12.

𝑋~Geo
1

6
, so 𝔼 𝑋 = 1/(

1

6
) = 6

Applying Markov’s Inequality…

ℙ 𝑋 ≥ 12 ≤
𝔼 𝑋

12
=

6

12
=

1

2

Exact probability?

1 − ℙ 𝑋 < 12 ≈ 1 − 0.865 = 0.135

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: Ads 

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 75 or more ads.

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: Ads 

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 75 or more ads.

ℙ 𝑋 ≥ 75 ≤
𝔼 𝑋

75
=

25

75
=

1

3

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: More Ads 

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 20 or more ads.

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: More Ads 

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 20 or more ads.

ℙ 𝑋 ≥ 20 ≤
𝔼 𝑋

20
=

25

20
= 1.25 

Well, that’s…true. Technically.

But without more information we couldn’t hope to do much better. What 
if every page gives exactly 25 ads? Then the probability really is 1.



So…what do we do?

A better inequality!

We’re trying to bound the tails of the distribution. 

What parameter of a random variable describes the tails?

The variance!



Chebyshev’s Inequality

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Requirements: 

1. We know the expectation of 𝑋

2. We know the variance of 𝑋



Chebyshev’s Inequality

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Let 𝑋 be a random variable. For 

any 𝐤 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒌 𝐕𝐚𝐫 𝑿 ≤
𝟏

𝒌𝟐

Chebyshev’s Inequality

Two statements are equivalent. 

Left form is often easier to use. 

Right form is more intuitive.

Requirements: 

1. We know the expectation of 𝑋

2. We know the variance of 𝑋c

“probability we’re at least 𝑘 standard 

deviations away from the mean is ≤
1

𝑘2”



Example: Ads (but better!)

Suppose the average number of ads you see on a website is 25. And the 
variance of the number of ads is 16. Give an upper bound on the 
probability of seeing a website with 75 or more ads.

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Markov’s inequality gave: ℙ 𝑋 ≥ 75 ≤ 1/3



Example: Ads (but better!)

Suppose the average number of ads you see on a website is 25. And the 
variance of the number of ads is 16. Give an upper bound on the 
probability of seeing a website with 75 or more ads.

ℙ 𝑋 ≥ 75 = ℙ 𝑋 − 25 ≥ 75 − 25 ≤ ℙ 𝑋 − 25 ≥ 50 ≤
16

502

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Markov’s inequality gave: ℙ 𝑋 ≥ 75 ≤ 1/3



Example: Geometric RV

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. 

Bound the probability that 𝑋 ≥ 12

𝑋~Geo
1

6
,𝔼 𝑋 = 6, Var 𝑋 =

1−
1

6

1

6

2 =
5

6
1

36

= 30

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Markov’s inequality gave: ℙ 𝑋 ≥ 12 ≤ 0.5

Fill out the poll everywhere: 

pollev.com/cse312



Example: Geometric RV

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. 

Bound the probability that 𝑋 ≥ 12

𝑋~Geo
1

6
,𝔼 𝑋 = 6, Var 𝑋 =

1−
1

6

1

6

2 =
5

6
1

36

= 30

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Markov’s inequality gave: ℙ 𝑋 ≥ 12 ≤ 0.5



Example: Geometric RV

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. 

Bound the probability that 𝑋 ≥ 12

ℙ 𝑋 ≥ 12 = ℙ 𝑋 − 6 ≥ 12 − 6 ≤ ℙ 𝑋 − 6 ≥ 6 ≤
30

62 =
5

6

Not any better than Markov 

Markov’s inequality gave: ℙ 𝑋 ≥ 12 ≤ 0.5

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality



Example: Geometric RV (generalized)

Let 𝑋 be a geometric rv with parameter 𝑝

Bound the probability that 𝑋 ≥
2

𝑝

With Chebyshev’s…

𝔼 𝑋 =
1

𝑝
, ℙ 𝑋 ≥

2

𝑝
= ℙ 𝑋 −

1

𝑝
≥

1

𝑝
≤ ℙ 𝑋 −

1

𝑝
≥

1

𝑝
≤

1−𝑝

𝑝2

1/𝑝2 = 1 − 𝑝

With Markov’s…

ℙ 𝑋 ≥
2

𝑝
=

𝔼 𝑋

2/𝑝
=

1

𝑝
⋅

𝑝

2
=

1

2

For large 𝒑, Chebyshev is better.

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality



Example: Near the mean

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

ത𝑋 = ∑𝑋𝑖/1000.
𝑋𝑖  ~ Ber(0.6), so 𝔼 𝑋𝑖 = 0.6, Var 𝑋𝑖 = 0.6 ⋅ 0.4

𝔼 ത𝑋 =
1

1000
1000 ⋅ 0.6 = 0.6

Var ത𝑋 =
1

10002 (1000 ⋅ 0.6 ⋅ 0.4 ) 

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality



Example: Near the mean

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

ത𝑋 = ∑𝑋𝑖/1000.
𝑋𝑖  ~ Ber(0.6), so 𝔼 𝑋𝑖 = 0.6, Var 𝑋𝑖 = 0.6 ⋅ 0.4

𝔼 ത𝑋 =
1

1000
1000 ⋅ 0.6 = 0.6

Var ത𝑋 =
1

10002 (1000 ⋅ 0.6 ⋅ 0.4 ) 

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ .1 ≤
3/12500

.12  = .024

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality



Example: Near the mean

Suppose you run a poll of 𝒏 people where in the true population 60% 
of the population supports you. What is the probability that the poll is 
not within 10-percentage-points of the true value?

ത𝑋 = ∑𝑋𝑖/𝒏.
𝑋𝑖  ~ Ber(0.6), so 𝔼 𝑋𝑖 = 0.6, Var 𝑋𝑖 = 0.6 ⋅ 0.4

𝔼 ത𝑋 =
1

𝒏
𝒏 ⋅ 0.6 = 0.6

Var ത𝑋 =
1

𝒏2 𝒏 ⋅ 0.6 ⋅ 0.4 =
0.24

𝒏
 

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ .1 ≤
0.24/𝑛

.12  =
0.24

𝒏⋅.12 

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality



When is Chebyshev’s better than Markov’s?

> Chebyshev gets more powerful as the variance shrinks

> Repeated experiments are a great way to cause that to happen.

What do we mean by a “better” bound?



When is Chebyshev’s better than Markov’s?

> Chebyshev gets more powerful as the variance shrinks

> Repeated experiments are a great way to cause that to happen.

What do we mean by a “better” bound?

> it gives us more information

> a tighter bound is one that restricts the possible probabilities more

> e.g., 𝑃 𝑋 ≥ 4 ≤ 0.2 is a tighter bound than 𝑃 𝑋 ≥ 4 ≤ 0.4 and 
𝑃 𝑋 ≤ 4 ≥ 0.8 is a tighter bound than 𝑃 𝑋 ≤ 4 ≥ 0.6 



Chernoff Bound

Requirements: 

1. X is a sum of independent 
Bernoulli random variables. 

2. We know 𝔼 𝑋

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3

(Multiplicative) Chernoff Bound

LEFT TAIL RIGHT TAIL



Chernoff Bound

Wait a second…why do we need a bound for this??

Is 𝑿 binomial? 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3

(Multiplicative) Chernoff Bound

LEFT TAIL RIGHT TAIL



Chernoff Bound

Wait a second…why do we need a bound for this??

Is 𝑿 binomial? No! Because the Xi’s might not be identically distributed. 
But even if X is binomial, with REALLY large values of n, computing 
exact probabilities is computationally expensive. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3

(Multiplicative) Chernoff Bound

LEFT TAIL RIGHT TAIL



Chernoff Bound

Wait a second…why do we need a bound for this??

Can we use CLT? Yes, but remember that CLT is still an approximation. 
This bound will give us a definite upper bound for the probability. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3

(Multiplicative) Chernoff Bound

LEFT TAIL RIGHT TAIL



Chernoff Bound

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3

(Multiplicative) Chernoff Bound

Requirements: 

1. X is a sum of independent 
Bernoulli random variables. 

2. We know 𝔼 𝑋

LEFT TAIL RIGHT TAIL



Example: Polling (again, but better!)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ത𝑋 ≥ 0.7

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3

(Multiplicative) Chernoff Bound

LEFT TAIL RIGHT TAIL



Suppose you run a poll of 1000 people where in the true population 60% 
of the population supports you. What is the probability that the poll is 
not within 10-percentage-points of the true value?

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ത𝑋 ≥ 0.7



Example: Polling (1. bound the left tail)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

𝑋 = ∑𝑋𝑖 , where 𝑋𝑖~Ber(0.6), 𝜇 = 𝔼 𝑋 = 1000 ⋅ 0.6 = 600

ℙ
𝑋

1000
≤ 0.5 =

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −
𝛿2𝜇

2
 

Chernoff Bound (left tail)

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ഥ𝑿 ≤ 𝟎. 𝟓 + ℙ ത𝑋 ≥ 0.7



Example: Polling (1. bound the left tail)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

𝑋 = ∑𝑋𝑖 , where 𝑋𝑖~Ber(0.6), 𝜇 = 𝔼 𝑋 = 1000 ⋅ 0.6 = 600

ℙ
𝑋

1000
≤ 0.5 = ℙ(𝑋 ≤ 500)

500 = 1 − 𝛿 600 -> 𝛿 =
1

6

… = ℙ 𝑋 ≤ 1 −
1

6
𝜇 ≤ 𝑒−

1

62⋅600

2

≈ 0.0003 

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ഥ𝑿 ≤ 𝟎. 𝟓 + ℙ ത𝑋 ≥ 0.7

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −
𝛿2𝜇

2
 

Chernoff Bound (left tail)



Example: Polling (2. bound the right tail)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

𝑋 = ∑𝑋𝑖 , where 𝑋𝑖~Ber(0.6), 𝜇 = 𝔼 𝑋 = 1000 ⋅ 0.6 = 600

ℙ
𝑋

1000
≥ 0.7 =

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ഥ𝑿 ≥ 𝟎. 𝟕

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3

Chernoff Bound (right tail)

pollev.com/cse312



Example: Polling (2. bound the right tail)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

𝑋 = ∑𝑋𝑖 , where 𝑋𝑖~Ber(0.6), 𝜇 = 𝔼 𝑋 = 1000 ⋅ 0.6 = 600

ℙ
𝑋

1000
≥ 0.7 = ℙ(𝑋 ≥ 700)

700 = 1 + 𝛿 600 -> 𝛿 =
1

6

… = ℙ 𝑋 ≥ 1 +
1

6
𝜇 ≤ 𝑒−

1

62⋅600

3

≈ 0.0039 

Goal: bound ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ഥ𝑿 ≥ 𝟎. 𝟕

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3

Chernoff Bound (right tail)



Example: Polling (3. Putting it all together)

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

We want ℙ ത𝑋 − 0.6 ≥ 0.1 = ℙ ത𝑋 ≤ 0.5 + ℙ ത𝑋 ≥ 0.7

We know..

-> ℙ ത𝑋 ≤ 0.5 = ℙ 𝑋 ≤ 500 ≤ 0.0003 (from Chernoff bound, left tail)

-> ℙ ത𝑋 ≥ 0.7 = ℙ 𝑋 ≥ 700 ≤ 0.0039 (from Chernoff bound, right tail)
  

So, ℙ ത𝑋 − 0.6 ≥ 0.1 ≤ 0.0003 + 0.0039 = 0.0042

Less than 1%. That’s a better bound than Chebyshev gave!



Wait a Minute

This is just a binomial!
Well if all the 𝑋𝑖 have the same probability. It does work if they’re independent but 
have different distributions. But there’s bigger reasons to care…

The concentration inequality will let you control 𝑛 easily, even as a 
variable. That’s not easy with the binomial.

What happens when 𝑛 gets big?

Evaluating 20000
10000

. 5110000 ⋅.4910000 is fraught with chances for floating 

point error and other issues. Chernoff is much better.



Wait a Minute

I asked Wikipedia about the “Chernoff Bound” and I saw something 
different?

This is the “easiest to use” version of the bound. If you need something 
more precise, there are other versions. 

Why are the tails different??

The strongest/original versions of “Chernoff bounds” are symmetric (1 +
𝛿 and 1 − 𝛿 correspond), but those bounds are ugly and hard to use.

When computer scientists made the “easy to use versions”, they needed 
to use some inequalities. The numerators now have plain old 𝛿’s, instead 
of 1 + or 1 −. As part of the simplification to this version, there were 
different inequalities used so you don’t get exactly the same expression. 



But Wait! There’s More

For this class, please limit yourself to:
Markov, Chebyshev, and Chernoff, as stated in these slides…

But for your information. There’s more.

> Trying to apply Chebyshev, but only want a “one-sided” bound (and tired of 
losing that almost-factor-of-two)Try Cantelli’s Inequality

> In a position to use Chernoff, but want additive distance to the mean 
instead of multiplicative? They got one of those.

> Have a sum of independent random variables that aren’t indicators, but are 
bounded, you better believe Wikipedia’s got one

> Have a sum of random matrices instead of a sum of random numbers. Not 
only is that a thing you can do, but the eigenvalue of the matrix concentrates

There’s a whole book of these!

https://en.wikipedia.org/wiki/Cantelli%27s_inequality
https://en.wikipedia.org/wiki/Chernoff_bound#Additive_form_(absolute_error)
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality#General_case_of_bounded_random_variables
https://en.wikipedia.org/wiki/Matrix_Chernoff_bound
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/1juclfo/alma991618178901452


Tail Bounds – Takeaways 

Useful when an experiment is complicated and you just need the 
probability to be small (you don’t need the exact value).

Choosing a minimum 𝑛 for a poll – don’t need exact probability of 
failure, just to make sure it’s small.

Designing probabilistic algorithms – just need a guarantee that they’ll 
be extremely accurate 

Learning more about the situation (e.g. learning variance instead of just 
mean, knowing bounds on the support of the starting variables) usually 
lets you get more accurate bounds.



Tail Bounds – Summary 

• Markov’s inequality - ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]

𝑡
•  Use if 𝑋 is non-negative and we know the expectation

•  Useful when we don’t know much about 𝑋

• Chebyshev’s inequality - ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var t

𝑡2

•  Use if we know the expectation and variance of 𝑋

•  Gives better bounds with small variances

• Chernoff Bound

•  Use if 𝑋 is a sum of independent Bernoulli random variables 

•  Gives a very good bound usually, and is especially helpful when 𝑋 is binomial 
and we can’t easily computationally compute some summations/probability

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3



One More Bound – Union Bound



Union Bound (not a tail bound, but still a bound)

For any events 𝐸, 𝐹
ℙ 𝑬 ∪ 𝑭 ≤ ℙ 𝑬 + ℙ(𝑭)

Union Bound

Proof? 

By inclusion-exclusion, ℙ 𝐸 ∪ 𝐹 = ℙ 𝐸 + ℙ 𝐹 − ℙ(𝐸 ∩ 𝐹)

And ℙ 𝐸 ∩ 𝐹 ≥ 0.

Sometimes we don’t’ have enough 
information to compute this 
probability exactly, so we use the 
union bound to bound that 
probability



Concentration Applications

A common pattern: 

“What’s the probability something goes wrong?”

> Figure out “what could possibly go wrong” – often these are 
dependent.

> 

Use a concentration inequality for each of the things that could go 
wrong.

Union bound over everything that could go wrong. 



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.

𝐴𝑖 is the event the 𝑖’th square has at least 36 frogs

ℙ 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ ⋯ ∪ 𝐴25
≤ ℙ 𝐴1 + ℙ 𝐴2 + ℙ 𝐴3 + ⋯ + ℙ 𝐴25    by the union bound

 How do we find ℙ(𝑨𝒊)? Use another bound! 

These events are dependent – adjacent squares affect each other! 



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.

𝐴𝑖 is the event the 𝑖’th square has at least 36 frogs

How do we find ℙ(𝑨𝒊)? Use another bound! 

Let 𝑌 be the number frogs in i’th square
𝑌 = ∑𝑗=1

100 𝑋𝑗, Xj~Ber(1/5), 𝐸 𝑌 =
100

5
= 20 

ℙ 𝐴𝑖 = ℙ(𝑌 ≥ 36) =ℙ 𝑌 ≥ 1 +
4

5
20

≤ 𝑒 −

4
5

2
⋅20

3 ≤ 0.015 by the Chernoff bound



Example: Frogs 

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability at least one square ends up with at least 36 frogs.

𝐴𝑖 is the event the 𝑖’th square has at least 36 frogs

ℙ 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ ⋯ ∪ 𝐴25
≤ ℙ 𝐴1 + ℙ 𝐴2 + ℙ 𝐴3 + ⋯ + ℙ 𝐴25                  by the union bound
≤ 0.015 + 0.015 + 0.015 + ⋯ + 0.015 = 25 ⋅ 0.015 by the Chernoff bound
= 0.375 



Example: Frogs 

For an arbitrary location:

There are 100 frogs who could end up there (those above, below, left, 
right, and at that location). Each with probability .2. Let 𝑋 be the number 
that land at the location we’re interested in.

ℙ 𝑋 ≥ 36 = ℙ 𝑋 ≥ 1 + 𝛿 20 ≤ exp −
4

5

2
⋅20

3
≤ 0.015

There are 25 locations. Since all locations are symmetric, by the union 
bound the probability of at least one location having 36 or more frogs is 
at most 25 ⋅ 0.015 ≤ 0.375.



Tail Bounds – Summary 

• Markov’s inequality - ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]

𝑡
•  Use if 𝑋 is non-negative and we know the expectation

•  Useful when we don’t know much about 𝑋

• Chebyshev’s inequality - ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var t

𝑡2

•  Use if we know the expectation and variance of 𝑋
•  Gives better bounds with small variances

• Chernoff Bound

•  Use if 𝑋 is a sum of independent Bernoulli random variables 

•  Gives a very good bound usually, and is especially helpful when 𝑋 is binomial 
and we can’t easily computationally compute some summations/probability

• Union Bound - ℙ 𝐴 ∪ 𝐵 ≤ ℙ 𝐴 + ℙ(𝐵)
•Use if we don’t have enough information to find the union (e.g,. ways for at least 
of __ to occur, for A, or B, or C, or … to occur)

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

2  and ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒
−

𝛿2𝜇

3
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